Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 39(1): 114-7, 2000 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18337877

RESUMO

In temporal speckle-pattern interferometry deformation information is extracted by a Fourier transform technique from the speckle pattern that is recorded over a period of time as the object is deformed. A limitation of the experimental arrangements reported to date is that the direction of the deformation cannot be determined. We propose removing this limitation by using the heterodyne principle. Some experimental results that were obtained by use of a rotating half-wave-plate frequency shifter are presented.

2.
Appl Opt ; 38(7): 1169-78, 1999 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18305728

RESUMO

Recently, a new method to measure object shape and deformation with temporal evolution of speckles in speckle interferometry was reported. In this method, certain parameters, sensitive to shape or deformation are changed continuously, and the fluctuations in the irradiance of each speckle is recorded. The information over the whole object deformation is retrieved by Fourier-transformation techniques. We present a detailed theory and analyze the influence of decorrelation due to longitudinal and lateral size of the speckles. It is also shown that the method can be used to measure small deformations (less than 5 microm) with higher resolution. Further, the nonlinearity of the camera is shown to enhance the sensitivity.

3.
Appl Opt ; 37(13): 2608-14, 1998 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18273200

RESUMO

We propose a new method for measuring large-object deformations byusing temporal evolution of the speckles in speckleinterferometry. The principle of the method is that by deformingthe object continuously, one obtains fluctuations in the intensity ofthe speckle. A large number of frames of the object motion arecollected to be analyzed later. The phase data for whole-objectdeformation are then retrieved by inverse Fourier transformation of afiltered spectrum obtained by Fourier transformation of thesignal. With this method one is capable of measuring deformationsof more than 100 mum, which is not possible using conventionalelectronic speckle pattern interferometry. We discuss theunderlying principle of the method and the results of theexperiments. Some nondestructive testing results are alsopresented.

4.
Appl Opt ; 37(16): 3385-90, 1998 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18273297

RESUMO

We outline a novel method for determining the shape of an object by use of temporal Fourier-transform analysis in dual-beam illumination speckle interferometry. The object whose shape is to be determined is rotated about an axis, and a number of frames of the image of the object motion are acquired. Temporal in-plane displacement that is due to the object rotation is related to the shape of the object and is retrieved from this large set of data by Fourier transformation. With this method one can determine the absolute height of the object with variable resolution, thereby allowing shapes of objects with large and small slopes to be determined. The theory of the method along with experimental results is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...