Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 15: 302, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25225118

RESUMO

BACKGROUND: De novo genome assembly of next-generation sequencing data is one of the most important current problems in bioinformatics, essential in many biological applications. In spite of significant amount of work in this area, better solutions are still very much needed. RESULTS: We present a new program, SAGE, for de novo genome assembly. As opposed to most assemblers, which are de Bruijn graph based, SAGE uses the string-overlap graph. SAGE builds upon great existing work on string-overlap graph and maximum likelihood assembly, bringing an important number of new ideas, such as the efficient computation of the transitive reduction of the string overlap graph, the use of (generalized) edge multiplicity statistics for more accurate estimation of read copy counts, and the improved use of mate pairs and min-cost flow for supporting edge merging. The assemblies produced by SAGE for several short and medium-size genomes compared favourably with those of existing leading assemblers. CONCLUSIONS: SAGE benefits from innovations in almost every aspect of the assembly process: error correction of input reads, string-overlap graph construction, read copy counts estimation, overlap graph analysis and reduction, contig extraction, and scaffolding. We hope that these new ideas will help advance the current state-of-the-art in an essential area of research in genomics.


Assuntos
Algoritmos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Gráficos por Computador , Tamanho do Genoma
2.
Bioinformatics ; 30(19): 2717-22, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24947750

RESUMO

MOTIVATION: Metagenomic sequencing allows reconstruction of microbial genomes directly from environmental samples. Omega (overlap-graph metagenome assembler) was developed for assembling and scaffolding Illumina sequencing data of microbial communities. RESULTS: Omega found overlaps between reads using a prefix/suffix hash table. The overlap graph of reads was simplified by removing transitive edges and trimming short branches. Unitigs were generated based on minimum cost flow analysis of the overlap graph and then merged to contigs and scaffolds using mate-pair information. In comparison with three de Bruijn graph assemblers (SOAPdenovo, IDBA-UD and MetaVelvet), Omega provided comparable overall performance on a HiSeq 100-bp dataset and superior performance on a MiSeq 300-bp dataset. In comparison with Celera on the MiSeq dataset, Omega provided more continuous assemblies overall using a fraction of the computing time of existing overlap-layout-consensus assemblers. This indicates Omega can more efficiently assemble longer Illumina reads, and at deeper coverage, for metagenomic datasets. AVAILABILITY AND IMPLEMENTATION: Implemented in C++ with source code and binaries freely available at http://omega.omicsbio.org.


Assuntos
Biologia Computacional/métodos , DNA Bacteriano/análise , Análise de Sequência de DNA/métodos , Software , Algoritmos , Computadores , Genoma Bacteriano , Internet , Metagenoma , Metagenômica/métodos , Linguagens de Programação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...