Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932080

RESUMO

Car manufacturers are currently challenged with increasing the sustainability of their products and production to comply with sustainability requirements and legislation. One way to enhance product sustainability is by reducing the carbon footprint of fossil-based plastic parts. Particle foams are a promising solution to achieve the goal of using lightweight parts with minimal material input. Ongoing developments involve the use of expanded particle foam beads made from engineering plastics such as polyamide (EPA). To achieve this, a simulated life cycle was carried out on virgin EPA, including mechanical recycling. The virgin material was processed into specimens using a steam-free method. One series was artificially aged to replicate automotive life cycle stresses, while the other series was not. The mechanical recycling and re-foaming of the minipellets were then carried out, resulting in an EPA particle foam with 100% recycled content. Finally, the thermal and chemical material properties were comparatively analysed. The study shows that the recycled EPA beads underwent polymer degradation during the simulated life cycle, as evidenced by their material properties. For instance, the recycled beads showed a more heterogeneous molecular weight distribution (an increase in PDI from two to three), contained carbonyl groups, and exhibited an increase in the degree of crystallization from approximately 24% to 36%.

2.
Polymers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337290

RESUMO

Reducing the CO2 emissions of plastic parts is crucial in terms of sustainable product and process designs. Approaches include the use of recycled materials and reducing the energy demands of processes through more efficient technologies. In this context, this study shows the potential of the steam-free processing of particle foam beads into thin-walled moulded parts. Expanded polypropylene (EPP) particle foam beads have been processed in both a steam-free and steam-based process. For this purpose, specimens with different part densities and thicknesses were produced, the mechanical properties were investigated, and the surface quality was discussed. Specimens made of EPP with a part thickness of 5 to 20 mm and part densities of 60 to 185 g/L were produced steam-free. Lower part thicknesses and higher densities increase the mechanical properties. As the density increased, the homogeneity of the surfaces of the steam-free specimens also increased. In comparison, specimens with a thickness of 10 mm and part densities of 35 to 90 g/L were produced on a steam-based process. The results of the mechanical test were compared with those of the steam-free specimens. The steam-based specimens showed higher mechanical properties for the same density.

3.
Polymers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36433043

RESUMO

To maximize the driving range and minimize the associated energy needs and, thus, the number of batteries of electric vehicles, OEMs have adopted lightweight materials, such as long fiber-reinforced thermoplastics, and new processes, such as microcellular injection molding. These components must withstand specific loading conditions that occur during normal operation. Their mechanical response depends on the fiber and foam microstructures, which in turn are defined by the fabrication process. In this work, long fiber thermoplastic door panels were manufactured using the Ku-FizzTM microcellular injection molding process and were tested for their impact resistance, dynamic properties, and vibration response. Material constants were compared to the properties of unfoamed door panels. The changes in mechanical behavior were explained through the underlying differences in their respective microstructures. The specific storage modulus and specific elastic modulus of foamed components were within 10% of their unfoamed counterparts, while specific absorbed energy was 33% higher for the foamed panel by maintaining the panel's mass/weight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...