Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 189(1): 131-41, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17056750

RESUMO

The flagellar regulon of Brucella melitensis 16M contains 31 genes clustered in three loci on the small chromosome. These genes encode a polar sheathed flagellum that is transiently expressed during vegetative growth and required for persistent infection in a mouse model. By following the expression of three flagellar genes (fliF, flgE, and fliC, corresponding to the MS ring, hook, and filament monomer, respectively), we identified a new regulator gene, ftcR (flagellar two-component regulator). Inactivation of ftcR led to a decrease in flagellar gene expression and to impaired Brucella virulence. FtcR has a two-component response regulator domain as well a DNA binding domain and is encoded in the first flagellar locus of B. melitensis. Both the ftcR sequence and its genomic context are conserved in other related alpha-proteobacteria. During vegetative growth in rich medium, ftcR expression showed a peak during the early exponential phase that paralleled fliF gene expression. VjbR, a quorum-sensing regulator of the LuxR family, was previously found to control fliF and flgE gene expression. Here, we provide some new elements suggesting that the effect of VjbR on these flagellar genes is mediated by FtcR. We found that ftcR expression is partially under the control of VjbR and that the expression in trans of ftcR in a vjbR mutant restored the production of the hook protein (FlgE). Finally, FtcR binds directly to the upstream region of the fliF gene. Therefore, our data support the role of FtcR as a flagellar master regulator in B. melitensis and perhaps in other related alpha-proteobacteria.


Assuntos
Proteínas de Bactérias/genética , Brucella melitensis/genética , Flagelos/genética , Regulon , Rhizobiaceae , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Brucella melitensis/patogenicidade , Proteínas de Membrana/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Virulência
2.
Vet Microbiol ; 90(1-4): 317-28, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12414152

RESUMO

Although Brucella is responsible for one of the major worldwide zoonosis, our understanding of its pathogenesis remains in its infancy. In this paper, we summarize some of the research in progress in our laboratory that we think could contribute to a better understanding of the Brucella molecular virulence mechanisms and their regulation.


Assuntos
Brucella/fisiologia , Brucella/patogenicidade , Animais , Brucella/citologia , Brucelose/microbiologia , Brucelose/veterinária , Comunicação Celular , Ciclo Celular/genética , Flagelos/genética , Humanos , Medições Luminescentes , Vibrio/patogenicidade , Vibrio/fisiologia , Zoonoses/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...