Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 31(10): 4533-4553, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33963394

RESUMO

Sparse population activity is a well-known feature of supragranular sensory neurons in neocortex. The mechanisms underlying sparseness are not well understood because a direct link between the neurons activated in vivo, and their cellular properties investigated in vitro has been missing. We used two-photon calcium imaging to identify a subset of neurons in layer L2/3 (L2/3) of mouse primary somatosensory cortex that are highly active following principal whisker vibrotactile stimulation. These high responders (HRs) were then tagged using photoconvertible green fluorescent protein for subsequent targeting in the brain slice using intracellular patch-clamp recordings and biocytin staining. This approach allowed us to investigate the structural and functional properties of HRs that distinguish them from less active control cells. Compared to less responsive L2/3 neurons, HRs displayed increased levels of stimulus-evoked and spontaneous activity, elevated noise and spontaneous pairwise correlations, and stronger coupling to the population response. Intrinsic excitability was reduced in HRs, while we found no evidence for differences in other electrophysiological and morphological parameters. Thus, the choice of which neurons participate in stimulus encoding may be determined largely by network connectivity rather than by cellular structure and function.


Assuntos
Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Proteínas de Fluorescência Verde , Individualidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Ruído , Técnicas de Patch-Clamp , Estimulação Física , Córtex Somatossensorial/ultraestrutura , Vibrissas/inervação
2.
Opt Express ; 17(16): 13904-17, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19654798

RESUMO

Laser speckle imaging (LSI) based on the speckle contrast analysis is a simple and robust technique for imaging of heterogeneous dynamics. LSI finds frequent application for dynamical mapping of cerebral blood flow, as it features high spatial and temporal resolution. However, the quantitative interpretation of the acquired data is not straightforward for the common case of a speckle field formed by both by moving and localized scatterers such as blood cells and bone or tissue. Here we present a novel processing scheme, we call dynamic laser speckle imaging (dLSI), that can be used to correctly extract the temporal correlation parameters from the speckle contrast measured in the presence of a static or slow-evolving background. The static light contribution is derived from the measurements by cross-correlating sequential speckle images. In-vivo speckle imaging experiments performed in the rodent brain demonstrate that dLSI leads to improved results. The cerebral hemodynamic response observed through the thinned and intact skull are more pronounced in the dLSI images as compared to the standard speckle contrast analysis. The proposed method also yields benefits with respect to the quality of the speckle images by suppressing contributions of non-uniformly distributed specular reflections.


Assuntos
Algoritmos , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Fluxometria por Laser-Doppler/métodos , Humanos
3.
J Physiol ; 587(Pt 13): 3153-8, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19403621

RESUMO

Two-photon microscopy is a powerful method in biomedical research that allows functional and anatomical imaging at a subcellular resolution in vivo. The technique is seriously hampered by absorption and scattering of light by blood, which prevents imaging through large vessels. Here, we demonstrate in the rat cerebral cortex that blood replacement by perfluorocarbon emulsion, a compound also used in human critical care medicine, yields superior image quality, while preserving neuronal integrity. Shadows of large superficial vessels disappear completely and cells can be imaged underneath them. For the first time, it is possible to image complete populations of neurons and astrocytes in the upper layers of neocortex in vivo.


Assuntos
Substitutos Sanguíneos , Fluorocarbonos , Microscopia Confocal/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Transfusão de Sangue , Sinalização do Cálcio , Humanos , Masculino , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...