Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-519151

RESUMO

Entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells depends on refolding of the virus-encoded spike protein from a prefusion conformation, metastable after cleavage, to a lower energy, stable postfusion conformation. This transition overcomes kinetic barriers for fusion of viral and target cell membranes. We report here a cryo-EM structure of the intact postfusion spike in a lipid bilayer that represents single-membrane product of the fusion reaction. The structure provides structural definition of the functionally critical membraneinteracting segments, including the fusion peptide and transmembrane anchor. The internal fusion peptide forms a hairpin-like wedge that spans almost the entire lipid bilayer and the transmembrane segment wraps around the fusion peptide at the last stage of membrane fusion. These results advance our understanding of the spike protein in a membrane environment and may guide development of intervention strategies.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-489772

RESUMO

The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. We have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and animal model with previously prevalent variants. BA.2 S can fuse membranes more efficiently than Omicron BA.1, mainly due to lack of a BA.1-specific mutation that may retard the receptor engagement, but still less efficiently than other variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility for the Omicron subvariants.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-475922

RESUMO

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bearing an unusually high number of mutations, has become a dominant strain in many countries within several weeks. We report here structural, functional and antigenic properties of its full-length spike (S) protein with a native sequence in comparison with those of previously prevalent variants. Omicron S requires a substantially higher level of host receptor ACE2 for efficient membrane fusion than other variants, possibly explaining its unexpected cellular tropism. Mutations not only remodel the antigenic structure of the N-terminal domain of the S protein, but also alter the surface of the receptor-binding domain in a way not seen in other variants, consistent with its remarkable resistance to neutralizing antibodies. These results suggest that Omicron S has acquired an extraordinary ability to evade host immunity by excessive mutations, which also compromise its fusogenic capability.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-456689

RESUMO

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report here structure, function and antigenicity of its full-length spike (S) trimer in comparison with those of other variants, including Gamma, Kappa, and previously characterized Alpha and Beta. Delta S can fuse membranes more efficiently at low levels of cellular receptor ACE2 and its pseudotyped viruses infect target cells substantially faster than all other variants tested, possibly accounting for its heightened transmissibility. Mutations of each variant rearrange the antigenic surface of the N-terminal domain of the S protein in a unique way, but only cause local changes in the receptor-binding domain, consistent with greater resistance particular to neutralizing antibodies. These results advance our molecular understanding of distinct properties of these viruses and may guide intervention strategies.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-439709

RESUMO

Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains that continue to fuel the COVID-19 pandemic despite intensive vaccination efforts throughout the world. We report here cryo-EM structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Mutations in the B.1.1.7 protein increase the accessibility of its receptor binding domain and also the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement can account for the increased transmissibility and risk of mortality as the variant may begin to infect efficiently infect additional cell types expressing low levels of ACE2. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, rendering complete resistance to some potent neutralizing antibodies. These findings provide structural details on how the wide spread of SARS-CoV-2 enables rapid evolution to enhance viral fitness and immune evasion. They may guide intervention strategies to control the pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...