Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 7: 12460, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549343

RESUMO

Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2)=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Idoso , Anticorpos Monoclonais/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Certolizumab Pegol/uso terapêutico , Estudos de Coortes , Crowdsourcing , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Fator de Necrose Tumoral alfa/imunologia
3.
BMC Bioinformatics ; 14 Suppl 13: S3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24266904

RESUMO

BACKGROUND: This paper introduces and applies a genome wide predictive study to learn a model that predicts whether a new subject will develop breast cancer or not, based on her SNP profile. RESULTS: We first genotyped 696 female subjects (348 breast cancer cases and 348 apparently healthy controls), predominantly of Caucasian origin from Alberta, Canada using Affymetrix Human SNP 6.0 arrays. Then, we applied EIGENSTRAT population stratification correction method to remove 73 subjects not belonging to the Caucasian population. Then, we filtered any SNP that had any missing calls, whose genotype frequency was deviated from Hardy-Weinberg equilibrium, or whose minor allele frequency was less than 5%. Finally, we applied a combination of MeanDiff feature selection method and KNN learning method to this filtered dataset to produce a breast cancer prediction model. LOOCV accuracy of this classifier is 59.55%. Random permutation tests show that this result is significantly better than the baseline accuracy of 51.52%. Sensitivity analysis shows that the classifier is fairly robust to the number of MeanDiff-selected SNPs. External validation on the CGEMS breast cancer dataset, the only other publicly available breast cancer dataset, shows that this combination of MeanDiff and KNN leads to a LOOCV accuracy of 60.25%, which is significantly better than its baseline of 50.06%. We then considered a dozen different combinations of feature selection and learning method, but found that none of these combinations produces a better predictive model than our model. We also considered various biological feature selection methods like selecting SNPs reported in recent genome wide association studies to be associated with breast cancer, selecting SNPs in genes associated with KEGG cancer pathways, or selecting SNPs associated with breast cancer in the F-SNP database to produce predictive models, but again found that none of these models achieved accuracy better than baseline. CONCLUSIONS: We anticipate producing more accurate breast cancer prediction models by recruiting more study subjects, providing more accurate labelling of phenotypes (to accommodate the heterogeneity of breast cancer), measuring other genomic alterations such as point mutations and copy number variations, and incorporating non-genetic information about subjects such as environmental and lifestyle factors.


Assuntos
Neoplasias da Mama/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Adulto , Algoritmos , Área Sob a Curva , Canadá , Estudos de Casos e Controles , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Fenótipo , Fatores de Risco
4.
BMC Bioinformatics ; 14 Suppl 13: S4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24266942

RESUMO

BACKGROUND: The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. RESULTS: Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. CONCLUSIONS: Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.


Assuntos
Algoritmos , Lógica Fuzzy , Perfilação da Expressão Gênica , Análise Serial de Proteínas/métodos , Máquina de Vetores de Suporte , Análise por Conglomerados , Neoplasias do Colo/classificação , Neoplasias do Colo/genética , Biologia Computacional , Árvores de Decisões , Expressão Gênica , Humanos , Leucemia/classificação , Leucemia/genética , Masculino , Neoplasias da Próstata/classificação , Neoplasias da Próstata/genética , Software
5.
BMC Bioinformatics ; 14: 61, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23432980

RESUMO

BACKGROUND: Population stratification is a systematic difference in allele frequencies between subpopulations. This can lead to spurious association findings in the case-control genome wide association studies (GWASs) used to identify single nucleotide polymorphisms (SNPs) associated with disease-linked phenotypes. Methods such as self-declared ancestry, ancestry informative markers, genomic control, structured association, and principal component analysis are used to assess and correct population stratification but each has limitations. We provide an alternative technique to address population stratification. RESULTS: We propose a novel machine learning method, ETHNOPRED, which uses the genotype and ethnicity data from the HapMap project to learn ensembles of disjoint decision trees, capable of accurately predicting an individual's continental and sub-continental ancestry. To predict an individual's continental ancestry, ETHNOPRED produced an ensemble of 3 decision trees involving a total of 10 SNPs, with 10-fold cross validation accuracy of 100% using HapMap II dataset. We extended this model to involve 29 disjoint decision trees over 149 SNPs, and showed that this ensemble has an accuracy of ≥ 99.9%, even if some of those 149 SNP values were missing. On an independent dataset, predominantly of Caucasian origin, our continental classifier showed 96.8% accuracy and improved genomic control's λ from 1.22 to 1.11. We next used the HapMap III dataset to learn classifiers to distinguish European subpopulations (North-Western vs. Southern), East Asian subpopulations (Chinese vs. Japanese), African subpopulations (Eastern vs. Western), North American subpopulations (European vs. Chinese vs. African vs. Mexican vs. Indian), and Kenyan subpopulations (Luhya vs. Maasai). In these cases, ETHNOPRED produced ensembles of 3, 39, 21, 11, and 25 disjoint decision trees, respectively involving 31, 502, 526, 242 and 271 SNPs, with 10-fold cross validation accuracy of 86.5% ± 2.4%, 95.6% ± 3.9%, 95.6% ± 2.1%, 98.3% ± 2.0%, and 95.9% ± 1.5%. However, ETHNOPRED was unable to produce a classifier that can accurately distinguish Chinese in Beijing vs. Chinese in Denver. CONCLUSIONS: ETHNOPRED is a novel technique for producing classifiers that can identify an individual's continental and sub-continental heritage, based on a small number of SNPs. We show that its learned classifiers are simple, cost-efficient, accurate, transparent, flexible, fast, applicable to large scale GWASs, and robust to missing values.


Assuntos
Inteligência Artificial , Frequência do Gene , Grupos Raciais/genética , Povo Asiático/genética , População Negra/genética , Árvores de Decisões , Etnicidade/genética , Estudo de Associação Genômica Ampla , Genótipo , Projeto HapMap , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , População Branca/genética
6.
Int J Bioinform Res Appl ; 8(1-2): 54-66, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22450270

RESUMO

Current method of diagnosing kidney rejection based on histopathology of renal biopsies in form of lesion scores is error-prone. Researchers use gene expression microarrays in combination of machine learning to build better kidney rejection predictors. However the high dimensionality of data makes this task challenging and compels application of feature selection methods. We present a method for predicting lesions using combination of statistical and biological feature selection methods along with an ensemble learning technique. Results show that combining highly interacting genes (Hub Genes) from protein-protein interaction network with genes selected by squared t-test method brings the most accurate kidney lesion score predictor.


Assuntos
Bases de Dados Factuais , Expressão Gênica , Rejeição de Enxerto/metabolismo , Transplante de Rim , Rim/metabolismo , Inteligência Artificial , Perfilação da Expressão Gênica , Rejeição de Enxerto/patologia , Humanos , Rim/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...