Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 7): 127392, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37827412

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that leads to cognitive decline and memory loss. Unfortunately, there is no effective treatment for this condition, so there is a growing interest in developing new anti-AD agents. In this research project, a series of phenyl-quinoline derivatives were designed as potential anti-AD agents. These derivatives were substituted at two different positions on benzyl and phenyl rings. The structures of the derivatives were characterized using techniques such as IR spectroscopy, 1H NMR, 13C NMR, and elemental analysis. During the in vitro screening, the derivatives were tested against both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). It was observed that most of the derivatives showed higher selectivity against BChE compared to AChE. Among the derivatives, analog 7n (with a methoxy group at R1 and a 4-bromine substituent at R2 exhibited the highest potency, with a 75-fold improvement in the activity compared to the positive control. Importantly, this potent analog demonstrated no toxicity at the tested concentration on SH-SY5Y cells, indicating its potential as a safe anti-AD agent. The level of GSK-3ß was also reduced after treatments with 7n at 50 µM. Overall, this study highlights the design and evaluation of phenyl-quinoline derivatives as promising candidates for developing novel anti-AD agents.


Assuntos
Doença de Alzheimer , Neuroblastoma , Quinolinas , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Glicogênio Sintase Quinase 3 beta , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Quinolinas/farmacologia , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
2.
Arch Pharm (Weinheim) ; 356(6): e2200571, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37017555

RESUMO

A new series of indole-carbohydrazide-phenoxy-N-phenylacetamide derivatives 7a-l were designed, synthesized, and screened for their α-glucosidase inhibitory abilities and cytotoxic effects. The results obtained in the α-glucosidase inhibition assay indicated that most of the synthesized derivatives displayed good to moderate inhibitory abilities (Ki values ranging from 14.65 ± 2.54 to 37.466 ± 6.46 µM) when compared with the standard drug acarbose (Ki = 42.38 ± 5.73 µM). Among them, 2-mehoxy-phenoxy derivatives 7l and 7h with 4-nitro and 4-chloro substituents on the phenyl ring of the N-phenylacetamide moiety, respectively, displayed the most inhibition effects. The inhibitory mechanism of these compounds was investigated by molecular docking studies. The in vitro cytotoxicity assay showed that only one compound, 2-methoxy-phenoxy derivative 7k with a 4-bromo substituent on the phenyl ring of the N-phenylacetamide moiety, exhibited moderate cytotoxicity against the human non-small-cell lung cancer cell line A549 and the rest of the compounds show almost no cytotoxicity. Further cytotoxic evaluations were also performed on compound 7k. The in silico pharmacokinetic study predicted that the selected compounds 7l and 7h are likely to be orally active.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Indóis/farmacologia
3.
J Biochem Mol Toxicol ; 35(4): e22688, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33368871

RESUMO

A series of new benzofuran-1,3,4-oxadiazole containing 1,2,3-triazole-acetamides 12a-n as potential anti-α-glucosidase agents were designed and synthesized. α-Glucosidase inhibition assay demonstrated that all the synthesized compounds 12a-n (half-maximal inhibitory concentration [IC50 ] values in the range of 40.7 ± 0.3-173.6 ± 1.9 µM) were more potent than standard inhibitor acarbose (IC50 = 750.0 ± 12.5 µM). Among them, the most potent compound was compound 12c, with inhibitory activity around 19-fold higher than acarbose. Since the most potent compound inhibited α-glucosidase in a competitive mode, a docking study of this compound was also performed into the active site of α-glucosidase. In vitro and in silico toxicity assays of the title compounds were also performed.


Assuntos
Acetamidas , Inibidores de Glicosídeo Hidrolases , Oxidiazóis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , alfa-Glucosidases/química , Acetamidas/síntese química , Acetamidas/química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Oxidiazóis/síntese química , Oxidiazóis/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...