Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798655

RESUMO

Inflammation is an essential defense response but operates at the cost of normal functions. Whether and how the negative impact of inflammation is monitored remains largely unknown. Acidification of the tissue microenvironment is associated with inflammation. Here we investigated whether macrophages sense tissue acidification to adjust inflammatory responses. We found that acidic pH restructured the inflammatory response of macrophages in a gene-specific manner. We identified mammalian BRD4 as a novel intracellular pH sensor. Acidic pH disrupts the transcription condensates containing BRD4 and MED1, via histidine-enriched intrinsically disordered regions. Crucially, decrease in macrophage intracellular pH is necessary and sufficient to regulate transcriptional condensates in vitro and in vivo, acting as negative feedback to regulate the inflammatory response. Collectively, these findings uncovered a pH-dependent switch in transcriptional condensates that enables environmental sensing to directly control inflammation, with a broader implication for calibrating the magnitude and quality of inflammation by the inflammatory cost.

2.
Trends Immunol ; 44(10): 807-825, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714775

RESUMO

pH is tightly maintained at cellular, tissue, and systemic levels, and altered pH - particularly in the acidic range - is associated with infection, injury, solid tumors, and physiological and pathological inflammation. However, how pH is sensed and regulated and how it influences immune responses remain poorly understood at the tissue level. Applying conceptual frameworks of homeostatic and inflammatory circuitries, we categorize cellular and tissue components engaged in pH regulation, drawing parallels from established cases in physiology. By expressing various intracellular (pHi) and extracellular pH (pHe)-sensing receptors, the immune system may integrate information on tissue and cellular states into the regulation of homeostatic and inflammatory programs. We introduce the novel concept of resistance and adaptation responses to rationalize pH-dependent immunomodulation intertwined with homeostatic equilibrium and inflammatory control. We discuss emerging challenges and opportunities in understanding the immunological roles of pH sensing, which might reveal new strategies to combat inflammation and restore tissue homeostasis.


Assuntos
Inflamação , Humanos , Homeostase , Concentração de Íons de Hidrogênio
3.
PLoS Pathog ; 19(6): e1011455, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37347786

RESUMO

XIAP is an endogenous inhibitor of cell death and inactivating mutations of XIAP are responsible for X-linked lymphoproliferative disease (XLP-2) and primary immunodeficiency, but the mechanism(s) behind these contradictory outcomes have been unclear. We report that during infection of macrophages and dendritic cells with various intracellular bacteria, XIAP restricts cell death and secretion of IL-1ß but promotes increased activation of NFκB and JNK which results in elevated secretion of IL-6 and IL-10. Poor secretion of IL-6 by Xiap-deficient antigen presenting cells leads to poor expansion of recently activated CD8 T cells during the priming phase of the response. On the other hand, Xiap-deficient CD8 T cells displayed increased proliferation and effector function during the priming phase but underwent enhanced contraction subsequently. Xiap-deficient CD8 T cells underwent skewed differentiation towards short lived effectors which resulted in poor generation of memory. Consequently Xiap-deficient CD8 T cells failed to provide effective control of bacterial infection during re-challenge. These results reveal the temporal impact of XIAP in promoting the fitness of activated CD8 T cells through cell extrinsic and intrinsic mechanisms and provide a mechanistic explanation of the phenotype observed in XLP-2 patients.


Assuntos
Interleucina-6 , Transtornos Linfoproliferativos , Humanos , Morte Celular , Transtornos Linfoproliferativos/genética , Macrófagos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
4.
J Biol Chem ; 298(10): 102386, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985421

RESUMO

The intestine-specific transcription factor Cdx2 is essential for intestinal homeostasis and has been implicated in the pathogenesis of disorders including inflammatory bowel disease. However, the mechanism by which Cdx2 influences intestinal disease is not clear. Here, we present evidence supporting a novel Cdx2-TRIM31-NLRP3 (NLR family, pyrin domain containing 3) signaling pathway, which may represent a mechanistic means by which Cdx2 impacts intestinal inflammation. We found that conditional loss of Cdx function resulted in an increase in proinflammatory cytokines, including tumor necrosis factor alpha, interleukin (IL)-1ß, and IL-6, in the mouse colon. We further show that TRIM31, which encodes a suppressor of NLRP3 (a central component of the NLRP3 inflammasome complex) is a novel Cdx2 target gene and is attenuated in the colon of Cdx conditional mutants. Consistent with this, we found that attenuation of TRIM31 in Cdx mutant intestine occurs concomitant with elevated levels of NLRP3 and an increase in inflammasome products. We demonstrate that specific inhibition of NLRP3 activity significantly reduced IL-1ß and IL-6 levels and extended the life span of Cdx conditional mutants, reflecting the therapeutic potential of targeting NLRP3. Tumor necrosis factor-alpha levels were also induced independent of NLRP3, potentially via elevated activity of the proinflammatory NF-κB signaling pathway in Cdx mutants. Finally, in silico analysis of ulcerative colitis patients revealed attenuation of CDX2 and TRIM31 expression coincident with enhanced expression of proinflammatory cytokines. We conclude that the novel Cdx2-TRIM31-NLRP3 signaling pathway promotes proinflammatory cytokine expression, and its inhibition may have therapeutic potential in human intestinal diseases.


Assuntos
Fator de Transcrição CDX2 , Inflamassomos , Doenças Inflamatórias Intestinais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Citocinas/metabolismo , Homeostase , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/genética , Intestinos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Doenças Inflamatórias Intestinais/metabolismo
5.
Cell Death Differ ; 29(3): 585-599, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34588632

RESUMO

Mutations in susceptibility alleles correlate with gut-inflammatory diseases, such as Crohn's disease; however, this does not often impact the disease progression indicating the existence of compensatory genes. We show that a reduction in Foxo3a expression in IL-10-deficient mice results in a spontaneous and aggressive Crohn's- like disease with 100% penetrance, which is rescued by deletion of myeloid cells, T cells and inhibition of mTORC1. In Foxo3a-/- IL-10-/- mice, there is poor cell death of myeloid cells in the gut, leading to increased accumulation of myeloid and T cells in the gut. Myeloid cells express high levels of inflammatory cytokines, and regulatory T cells are dysfunctional despite increased abundance. Foxo3a signaling represses the transcription of glutaminase (GLS/GLS2) to prevent over-consumption of glutamine by activated T cells and its conversion to glutamate that contributes to the TCA cycle and mTORC1 activation. Finally, we show that Foxo3a restricts the abundance of colitogenic microbiota in IL-10-deficient mice. Thus, by suppressing glutaminolysis in activated T cells Foxo3a mediates a critical checkpoint that prevents the development of fulminant gut inflammatory disease.


Assuntos
Colite , Proteína Forkhead Box O3/metabolismo , Interleucina-10 , Animais , Colite/genética , Colite/prevenção & controle , Inflamação , Interleucina-10/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Linfócitos T
6.
J Immunol Methods ; 481-482: 112788, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32304707

RESUMO

Macrophages are one of the important cell types in the innate immune system that are present in various anatomical regions of the body and promote early control of pathogens. The relative proportion of macrophages in various lymphoid and non-lymphoid regions is small, and as such it is tedious to purify these cells to homogeneity. Culture of bone marrow precursors with macrophage colony-stimulating factor (M-CSF) results in their differentiation to macrophages, however this procedure results in low numbers of differentiated macrophages. Herein we reveal a new approach of generating increased numbers of differentiated macrophages from bone marrow precursors. We show that M-CSF delivered in a plate-bound form results in the differentiation of significantly more macrophages in comparison to soluble M-CSF. Furthermore, the macrophages differentiated with plate-bound M-CSF display increased metabolic activity and cell death following infection with pathogens.


Assuntos
Fator Estimulador de Colônias de Macrófagos/química , Fator Estimulador de Colônias de Macrófagos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Plásticos/química , Animais , Camundongos , Camundongos Endogâmicos C57BL , Propriedades de Superfície
7.
J Biol Chem ; 295(14): 4661-4672, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094226

RESUMO

The necrosome is a protein complex required for signaling in cells that results in necroptosis, which is also dependent on tumor necrosis factor receptor (TNF-R) signaling. TNFα promotes necroptosis, and its expression is facilitated by mitogen-activated protein (MAP) kinase-activated protein kinase 2 (MK2) but is inhibited by the RNA-binding protein tristetraprolin (TTP, encoded by the Zfp36 gene). We have stimulated murine macrophages from WT, MyD88-/-, Trif-/-, MyD88-/-Trif-/-, MK2-/-, and Zfp36-/- mice with graded doses of lipopolysaccharide (LPS) and various inhibitors to evaluate the role of various genes in Toll-like receptor 4 (TLR4)-induced necroptosis. Necrosome signaling, cytokine production, and cell death were evaluated by immunoblotting, ELISA, and cell death assays, respectively. We observed that during TLR4 signaling, necrosome activation is mediated through the adaptor proteins MyD88 and TRIF, and this is inhibited by MK2. In the absence of MK2-mediated necrosome activation, lipopolysaccharide-induced TNFα expression was drastically reduced, but MK2-deficient cells became highly sensitive to necroptosis even at low TNFα levels. In contrast, during tonic TLR4 signaling, WT cells did not undergo necroptosis, even when MK2 was disabled. Of note, necroptosis occurred only in the absence of TTP and was mediated by the expression of TNFα and activation of JUN N-terminal kinase (JNK). These results reveal that TTP plays an important role in inhibiting TNFα/JNK-induced necrosome signaling and resultant cytotoxicity.


Assuntos
Necroptose , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Tristetraprolina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Caspase 8/química , Caspase 8/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Necroptose/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tristetraprolina/deficiência , Tristetraprolina/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...