Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 56(6): 1339-49, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23568272

RESUMO

AIMS/HYPOTHESIS: Phosphatidylinositol 3-OH kinases (PI3Ks) regulate beta cell mass, gene transcription, and function, although the contribution of the specific isoforms is unknown. As reduced type 1A PI3K signalling is thought to contribute to impaired insulin secretion, we investigated the role of the type 1A PI3K catalytic subunits α and ß (p110α and -ß) in insulin granule recruitment and exocytosis in rodent and human islets. METHODS: The p110α and p110ß subunits were inhibited pharmacologically or by small hairpin (sh)RNA-mediated knockdown, and were directly infused or overexpressed in mouse and human islets, beta cells and INS-1 832/13 cells. Glucose-stimulated insulin secretion (GSIS), single-cell exocytosis, Ca(2+) signalling, plasma membrane granule localisation, and actin density were monitored. RESULTS: Inhibition or knockdown of p110α increased GSIS. This was not due to altered Ca(2+) responses, depolymerisation of cortical actin or increased cortical granule density, but to enhanced Ca(2+)-dependent exocytosis. Intracellular infusion of recombinant PI3Kα (p110α/p85ß) blocked exocytosis. Conversely, knockdown (but not pharmacological inhibition) of p110ß blunted GSIS, reduced cortical granule density and impaired exocytosis. Exocytosis was rescued by direct intracellular infusion of recombinant PI3Kß (p110ß/p85ß) even when p110ß catalytic activity was inhibited. Conversely, both the wild-type p110ß and a catalytically inactive mutant directly facilitated exocytosis. CONCLUSIONS/INTERPRETATION: Type 1A PI3K isoforms have distinct and opposing roles in the acute regulation of insulin secretion. While p110α acts as a negative regulator of beta cell exocytosis and insulin secretion, p110ß is a positive regulator of insulin secretion through a mechanism separate from its catalytic activity.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Sinalização do Cálcio , Domínio Catalítico , Membrana Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Exocitose , Humanos , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
2.
Diabetologia ; 55(6): 1709-20, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22411134

RESUMO

AIMS/HYPOTHESIS: It is thought that the voltage-dependent potassium channel subunit Kv2.1 (Kv2.1) regulates insulin secretion by controlling beta cell electrical excitability. However, this role of Kv2.1 in human insulin secretion has been questioned. Interestingly, Kv2.1 can also regulate exocytosis through direct interaction of its C-terminus with the soluble NSF attachment receptor (SNARE) protein, syntaxin 1A. We hypothesised that this interaction mediates insulin secretion independently of Kv2.1 electrical function. METHODS: Wild-type Kv2.1 or mutants lacking electrical function and syntaxin 1A binding were studied in rodent and human beta cells, and in INS-1 cells. Small intracellular fragments of the channel were used to disrupt native Kv2.1-syntaxin 1A complexes. Single-cell exocytosis and ion channel currents were monitored by patch-clamp electrophysiology. Interaction between Kv2.1, syntaxin 1A and other SNARE proteins was probed by immunoprecipitation. Whole-islet Ca(2+)-responses were monitored by ratiometric Fura red fluorescence and insulin secretion was measured. RESULTS: Upregulation of Kv2.1 directly augmented beta cell exocytosis. This happened independently of channel electrical function, but was dependent on the Kv2.1 C-terminal syntaxin 1A-binding domain. Intracellular fragments of the Kv2.1 C-terminus disrupted native Kv2.1-syntaxin 1A interaction and impaired glucose-stimulated insulin secretion. This was not due to altered ion channel activity or impaired Ca(2+)-responses to glucose, but to reduced SNARE complex formation and Ca(2+)-dependent exocytosis. CONCLUSIONS/INTERPRETATION: Direct interaction between syntaxin 1A and the Kv2.1 C-terminus is required for efficient insulin exocytosis and glucose-stimulated insulin secretion. This demonstrates that native Kv2.1-syntaxin 1A interaction plays a key role in human insulin secretion, which is separate from the channel's electrical function.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Canais de Potássio Shab/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Eletrofisiologia , Humanos , Immunoblotting , Imunoprecipitação , Secreção de Insulina , Camundongos , Ligação Proteica , Ratos , Canais de Potássio Shab/genética , Sintaxina 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...