Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5784, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461157

RESUMO

The estrus cycle in female rodents has been shown to affect a variety of physiological functions. However, little is known about its presumably thorough effect on auditory processing during the sleep-wake cycle and sleep deprivation. Vertex auditory evoked potentials (vAEPs) were evoked by single click tone stimulation and recorded during different stages of the estrus cycle and sleep deprivation performed in metestrus and proestrus in female rats. vAEPs showed a strong sleep-dependency, with the largest amplitudes present during slow wave sleep while the smallest ones during wakefulness. Higher amplitudes and longer latencies were seen in the light phase during all vigilance stages. The largest amplitudes were found during proestrus (light phase) while the shortest latencies were seen during estrus (dark phase) compared to the 2nd day diestrus baseline. High-amplitude responses without latency changes were also seen during metestrus with increased homeostatic sleep drive. More intense and faster processing of auditory information during proestrus and estrus suggesting a more effective perception of relevant environmental cues presumably in preparation for sexual receptivity. A 4-h sleep deprivation resulted in more pronounced sleep recovery in metestrus compared to proestrus without difference in delta power replacement suggesting a better tolerance of sleep deprivation in proestrus. Sleep deprivation decreased neuronal excitability and responsiveness in a similar manner both during metestrus and proestrus, suggesting that the negative consequences of sleep deprivation on auditory processing may have a limited correlation with the estrus cycle stage.


Assuntos
Estro , Privação do Sono , Ratos , Feminino , Animais , Metestro , Proestro , Diestro
2.
Pharmacol Biochem Behav ; 239: 173754, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537873

RESUMO

BACKGROUND: Pituitary lactotrophs are under tonic dopaminergic inhibitory control and bromocriptine treatment blocks prolactin secretion. METHODS: Sleep and local field potential were addressed for 72 h after bromocriptine treatments applied during the different stages of the estrus cycle and for 24 h in the early- and middle postpartum period characterized by spontaneously different dynamics of prolactin release in female rats. RESULTS: Sleep changes showed strong dependency on the estrus cycle phase of the drug application. Strongest increase of wakefulness and reduction of slow wave sleep- and rapid eye movements sleep appeared during diestrus-proestrus and middle postpartum treatments. Stronger sleep-wake effects appeared in the dark phase in case of the estrus cycle treatments, but in the light phase in postpartum treatments. Slow wave sleep and REM sleep loss in case of estrus cycle treatments was not compensated at all and sleep loss seen in the first day post-injection was gained further later. In opposition, slow wave sleep loss in the light phase after bromocriptine injections showed compensation in the postpartum period treatments. Bromocriptine treatments resulted in a depression of local field potential delta power during slow wave sleep while an enhancement in beta and gamma power during wakefulness regardless of the treatment timing. CONCLUSIONS: These results can be explained by the interplay of dopamine D2 receptor agonism, lack of prolactin release and the spontaneous homeostatic sleep drive being altered in the different stages of the estrus cycle and the postpartum period.


Assuntos
Bromocriptina , Agonistas de Dopamina , Ciclo Estral , Período Pós-Parto , Ratos Wistar , Receptores de Dopamina D2 , Sono , Animais , Bromocriptina/farmacologia , Feminino , Período Pós-Parto/efeitos dos fármacos , Ratos , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Agonistas de Dopamina/farmacologia , Ciclo Estral/efeitos dos fármacos , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos , Prolactina
3.
Pharmacol Biochem Behav ; 225: 173556, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37087059

RESUMO

Pharmacological effects of ketamine may affect homeostatic sleep regulation via slow wave related mechanisms. In the present study effects of ketamine applied at anesthetic dose (80 mg/kg) were tested on neocortical electric activity for 24 h in freely moving rats. Ketamine effects were compared to changes during control (saline) injections and after 6 h gentle handling sleep deprivation (SD). As circadian factors may mask drug effects, an illumination protocol consisting of short light-dark cycles was applied. Ketamine application induced a short hypnotic stage with characteristic slow cortical rhythm followed by a long-lasting hyperactive waking resulting pharmacological SD. Coherence analysis indicated an increased level of local synchronization in broad local field potential frequency ranges during hyperactive waking but not during natural- or SD-evoked waking. Both slow wave sleep and rapid eye movement sleep were replaced after the termination of the ketamine effect. Our results show that both ketamine-induced hypnotic state and hyperactive waking can induce homeostatic sleep pressure with comparable intensity as 6 h SD, but ketamine-induced waking was different compared to the SD-evoked one. Both types of waking stages were different compared to spontaneous waking but all three types of wakefulness can engage the homeostatic sleep regulating machinery to generate sleep pressure dissipated by subsequent sleep. Current-source density analysis of the slow waves showed that cortical transmembrane currents were stronger during ketamine-induced hypnotic stage compared to both sleep replacement after SD and ketamine application, but intracortical activation patterns showed only quantitative differences. These findings may hold some translational value for human medical ketamine applications aiming the treatment of depression-associated sleep problems, which can be alleviated by the homeostatic sleep effect of the drug without the need for an intact circadian regulation.


Assuntos
Ketamina , Humanos , Ratos , Animais , Ketamina/farmacologia , Ritmo Circadiano/fisiologia , Eletroencefalografia/métodos , Sono , Privação do Sono , Vigília
4.
Eur J Pharmacol ; 916: 174621, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34965389

RESUMO

The histamine H3 receptor is a favourable target for the treatment of cognitive deficits. Here we report the in vitro and in vivo profile of RGH-235, a new potent, selective, and orally active H3 receptor antagonist/inverse agonist developed by Gedeon Richter Plc. Radioligand binding and functional assays were used for in vitro profiling. Procognitive efficacy was investigated in rodent cognitive tests, in models of attention deficit hyperactive disorder (ADHD) and in cognitive tests of high translational value (rat touch screen visual discrimination test, primate fixed-foreperiod visual reaction time task). Results were supported by pharmacokinetic studies, neurotransmitter release, sleep EEG and dipsogenia. RGH-235 displayed high affinity to H3 receptors (Ki = 3.0-9.2 nM, depending on species), without affinity to H1, H2 or H4 receptors and >100 other targets. RGH-235 was an inverse agonist ([35S] GTPγS binding) and antagonist (pERK1/2 ELISA), showing favourable kinetics, inhibition of the imetit-induced dipsogenia and moderate effects on sleep-wake EEG. RGH-235 stimulated neurotransmitter release both in vitro and in vivo. RGH-235 was active in spontaneously hypertensive rats (SHR), generally considered as a model of ADHD, and revealed a robust pro-cognitive profile both in rodent and primate tests (in 0.3-1 mg/kg) and in models of high translational value (e.g. in a rodent touch screen test and in non-human primates). The multiple and convergent procognitive effects of RGH-235 support the view that beneficial cognitive effects can be linked to antagonism/inverse agonism of H3 receptors.


Assuntos
Receptores Histamínicos H3 , Animais , Cognição , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Histamina/farmacologia , Agonistas dos Receptores Histamínicos/metabolismo , Ratos , Receptores Histamínicos H3/metabolismo
5.
BMC Neurosci ; 22(1): 13, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639837

RESUMO

BACKGROUND: Aside from the homeostatic and circadian components, light has itself an important, direct as well as indirect role in sleep regulation. Light exerts indirect sleep effect by modulating the circadian rhythms. Exposure to short light-dark cycle (LD 1:1, 1:1 h light - dark) eliminates the circadian sleep regulatory component but direct sleep effect of light could prevail. The aim of the present study was to examine the interaction between the light and the homeostatic influences regarding sleep regulation in a rat model. METHODS: Spontaneous sleep-wake and homeostatic sleep regulation by sleep deprivation (SD) and analysis of slow waves (SW) were examined in Wistar rats exposed to LD1:1 condition using LD12:12 regime as control. RESULTS: Slow wave sleep (SWS) and REM sleep were both enhanced, while wakefulness (W) was attenuated in LD1:1. SWS recovery after 6-h total SD was more intense in LD1:1 compared to LD12:12 and SWS compensation was augmented in the bright hours. Delta power increment during recovery was caused by the increase of SW number in both cases. More SW was seen during baseline in the second half of the day in LD1:1 and after SD compared to the LD12:12. Increase of SW number was greater in the bright hours compared to the dark ones after SD in LD1:1. Lights ON evoked immediate increase in W and decrease in both SWS and REM sleep during baseline LD1:1 condition, while these changes ceased after SD. Moreover, the initial decrease seen in SWS after lights ON, turned to an increase in the next 6-min bin and this increase was stronger after SD. These alterations were caused by the change of the epoch number in W, but not in case of SWS or REM sleep. Lights OFF did not alter sleep-wake times immediately, except W, which was increased by lights OFF after SD. CONCLUSIONS: Present results show the complex interaction between light and homeostatic sleep regulation in the absence of the circadian component and indicate the decoupling of SW from the homeostatic sleep drive in LD1:1 lighting condition.


Assuntos
Encéfalo/fisiologia , Homeostase/fisiologia , Fotoperíodo , Fases do Sono/fisiologia , Animais , Ritmo Circadiano , Eletrocorticografia , Masculino , Ratos , Ratos Wistar , Vigília/fisiologia
6.
Sci Rep ; 10(1): 8546, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444809

RESUMO

Sleep and local field potential (LFP) characteristics were addressed during the reproductive cycle in female rats using long-term (60-70 days) recordings. Changes in homeostatic sleep regulation was tested by sleep deprivation (SDep). The effect of mother-pup separation on sleep was also investigated during the postpartum (PP) period. First half of the pregnancy and early PP period showed increased wakefulness (W) and higher arousal indicated by elevated beta and gamma activity. Slow wave sleep (SWS) recovery was suppressed while REM sleep replacement was complete after SDep in the PP period. Pup separation decreased maternal W during early-, but increased during middle PP while did not affect during late PP. More W, less SWS, higher light phase beta activity but lower gamma activity was seen during the post-weaning estrus cycle compared to the virgin one. Maternal sleep can be governed by the fetuses/pups needs and their presence, which elevate W of mothers. Complete REM sleep- and incomplete SWS replacement after SDep in the PP period may reflect the necessity of maternal REM sleep for the offspring while SWS increase may compete with W essential for maternal care. Maternal experience may cause sleep and LFP changes in the post-weaning estrus cycle.


Assuntos
Estro/fisiologia , Homeostase , Período Pós-Parto/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Vigília/fisiologia , Desmame , Animais , Feminino , Gravidez , Ratos
7.
Brain Res ; 1725: 146471, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31568768

RESUMO

Slow cortical rhythm (SCR) is a rhythmic alternation of UP and DOWN states during sleep and anesthesia. SCR-associated slow waves reflect homeostatic sleep functions. Adenosine accumulating during prolonged wakefulness and sleep deprivation (SD) may play a role in the delta power increment during recovery sleep. NREM sleep is a local, use-dependent process of the brain. In the present study, direct effect of adenosine on UP and DOWN states was tested by topical application to frontal, somatosensory and visual cortices, respectively, in urethane-anesthetized rats. Local field potentials (LFPs) were recorded using an electrode array inserted close to the location of adenosine application. Multiple unit activity (MUA) was measured from layer V-VI in close proximity of the recording array. In the frontal and somatosensory cortex, adenosine modulated SCR with slow kinetics on the LFP level while MUA remained mostly unaffected. In the visual cortex, adenosine modulated SCR with fast kinetics. In each region, delta power increment was based on the increased frequency of state transitions as well as increased height of UP-state associated slow waves. These results show that adenosine may directly modulate SCR in a complex and region-specific manner which may be related to the finding that restorative processes may take place with varying duration and intensity during recovery sleep in different cortical regions. Adenosine may play a direct role in the increment of the slow wave power observed during local sleep, furthermore it may shape the region-specific characteristics of the phenomenon.


Assuntos
Adenosina/fisiologia , Anestésicos Intravenosos/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Ritmo Delta , Uretana/administração & dosagem , Adenosina/administração & dosagem , Animais , Ritmo beta/efeitos dos fármacos , Ritmo beta/fisiologia , Ritmo Delta/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos Wistar , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiologia , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiologia
8.
Brain Res Bull ; 137: 166-177, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242137

RESUMO

Sleep deprivation has severe consequences for higher nervous functions. Its effects on neuronal excitability may be one of the most important factors underlying functional deterioration caused by sleep loss. In the present work, excitability changes were studied using two complementary in vivo and ex vivo models. Auditory evoked potentials were recorded from freely-moving animals in vivo. Amplitude of evoked responses showed a near-continuous decrease during deprivation. Prevention of sleep also reduced synaptic efficacy ex vivo, measured from brain slices derived from rats that underwent sleep deprivation. While seizure susceptibility was not affected significantly by sleep deprivation in these preparations, the pattern of spontaneous seizure activity was altered. If seizures developed, they lasted longer and tended to contain more spikes in slices obtained from sleep-deprived than from control rats. Current-source density analysis revealed that location and sequence of activation of local cortical networks recruited by seizures did not change by sleep deprivation. Moderate differences seen in the amplitude of individual sinks and sources might be explained by smaller net transmembrane currents as a consequence of decreased excitability. These findings contradict the widely accepted conception of synaptic homeostasis suggesting gradual increase of excitability during wakefulness. Our results also indicate that decreased neuronal excitability caused by sleep deprivation is preserved in slices prepared from rats immediately after deprivation. This observation might mean new opportunities to explore the effects of sleep deprivation in ex vivo preparations that allow a wider range of experimental manipulations and more sophisticated methods of analysis than in vivo preparations.


Assuntos
Encéfalo/fisiopatologia , Privação do Sono/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Percepção Auditiva/fisiologia , Suscetibilidade a Doenças , Eletrocorticografia , Potenciais Evocados Auditivos/fisiologia , Masculino , Microeletrodos , Neurônios/fisiologia , Ratos Wistar , Recuperação de Função Fisiológica , Convulsões/fisiopatologia , Técnicas de Cultura de Tecidos
9.
Brain Res ; 1501: 1-11, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23333371

RESUMO

Sleep deprivation is followed by an increase in EEG delta power during recovery sleep indicating an increased sleep propensity. Delta waves mostly reflect the rhythmic recurring of generalized hyperpolarizations (DOWN state) in cortical neurons causing large, deep-positive waves in the LFP. Enhancement of delta power in recovery sleep can be the consequence of either the more frequent occurrence, or the higher amplitude caused by higher synchrony, or the longer duration of these DOWN states. In the present experiments, we examined these possibilities and found the strongest increase in the incidence of slow deep positive LFP waves (slow waves) following sleep deprivation indicating enhancement of DOWN state inducing and/or weakening of UP state maintaining processes. The strong decrease in multiunit activity during slow waves was preceded by a gradual buildup of activity. The significant correlation between these changes both in control and recovery recordings indicate that excitation might determine the subsequent drop in activity. Increased sensitivity of cortical neurons to excitation might offer an explanation for this observation. Current-source-density analysis indicated in our experiments that the first sources during DOWN states appeared in layer III-IV. Activation was then displaced to layer V. In the motor cortex, both corticocortical and thalamocortical fibers terminate in layer III that provides a strong feedforward excitation to layer V. As propagation of facilitatory signals through cortical layers is downwardly biased, disfacilitation might also follow this pattern. Sleep deprivation caused only quantitative differences in the sink-source patterns, indicating that existing processes were enhanced by sleep deprivation.


Assuntos
Córtex Cerebral/fisiopatologia , Ritmo Delta/fisiologia , Neurônios/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Animais , Masculino , Periodicidade , Ratos , Ratos Sprague-Dawley
10.
Brain Res Bull ; 87(1): 117-29, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22033501

RESUMO

Slow cortical rhythm (SCR) is characterized by rhythmic cycling of active (UP) and silent (DOWN) states in cortical cells. In urethane anesthesia, SCR appears as alternation of almost isoelectrical EEG periods and low-frequency, high-amplitude large shifts with superimposed high-frequency activity in the local field potentials (LFPs). Dense cholinergic projection reaches the cortex from the basal forebrain (BF), and acetylcholine (ACh) has been demonstrated to play a crucial role in the regulation of cortical activity. In the present experiments, cholinergic drugs were administered topically to the cortical surface of urethane-anesthetized rats to examine the direct involvement of ACh and the BF cholinergic system in the SCR. SCR was recorded by a 16-pole vertical electrode array from the hindlimb area of the somatosensory cortex. Multiple unit activity (MUA) was recorded from layer V to VI in close proximity of the recording array. Neither a low dose (10 mM solution) of the muscarinic antagonist atropine or the nicotinic agonist nicotine (1 mM solution) had any effect on SCR. In contrast, the higher dose (100 mM solution) of atropine, the cholinergic agonist carbachol (32 mM solution), and the cholinesterase inhibitor physostigmine (13 mM solution) all decreased the number of UP states, delta power (0-3 Hz) and MUA. These results suggest that cholinergic system may influence SCR through muscarinic mechanisms during urethane anesthesia. Cholinergic activation obstructs the mechanisms responsible for local or global synchronization seen during SCR as this rhythm was disrupted or aborted. Muscarinic antagonism can evoke similar changes when high dose of atropine is applied.


Assuntos
Acetilcolina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Anestésicos Intravenosos/farmacologia , Eletroencefalografia/métodos , Uretana/farmacologia , Potenciais de Ação/fisiologia , Animais , Atropina/farmacologia , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Inibidores da Colinesterase/farmacologia , Masculino , Antagonistas Muscarínicos/farmacologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Fisostigmina/farmacologia , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiologia
11.
Brain Res Bull ; 72(4-6): 293-301, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17452289

RESUMO

Neuropeptide Y (NPY) is present both in local neurons as well as in fibers in the basal forebrain (BF), an area that plays an important role in the regulation of cortical activation. In our previous experiments in anaesthetized rats, significant EEG changes were found after NPY injections to BF. EEG delta power increased while power in theta, alpha, and beta range decreased. The aim of the present experiments was to determine whether NPY infusion to BF can modulate sleep and behavior in freely moving rats. In this study, microinjections were made into the BF. Saline was injected to the control side, while either saline or one of two doses of NPY (0.5 microl, 300-500 pmol) to the treated side. EEG as well as behavioral changes were recorded. Behavioral elements after the NPY injections changed in a characteristic fashion in time and three consecutive phases were defined. In phase I (half hour 2), activated behavioral items (moving, rearing, grooming) appeared frequently. In phase II (half hours 3 and 4) activity decreased, while motionless state increased. Reappearance of activity was seen in phase III (half hours 5 and 6). NPY injections caused sleep-wake changes. The three phases described for behavioral changes were also reflected in the sleep data. During phase I, lower NPY dose increased wakefulness and decreased deep sleep. Reduced behavioral activity seen in phase II was partially reflected in the sleep. In this phase, wakefulness tended to increase in the third half hour, while decreased in the 4th half hour. Deep sleep and total slow wave sleep non-significantly decreased in the third and increased in the 4th half hour. In most cases, wakefulness was elevated again during Phase III, while sleep decreased. Length of single sleep-wake epochs did not change after NPY injections. Our results suggest a role for NPY in the integration of sleep and behavioral stages via the BF.


Assuntos
Comportamento Exploratório/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Prosencéfalo/efeitos dos fármacos , Sono/efeitos dos fármacos , Vigília , Análise de Variância , Animais , Comportamento Animal , Relação Dose-Resposta a Droga , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Eletroencefalografia , Comportamento Exploratório/fisiologia , Masculino , Prosencéfalo/fisiologia , Ratos , Ratos Wistar , Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...