Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(3): 744-751, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34940774

RESUMO

While MAX phases offer an exotic combination of ceramic and metallic properties, rendering them a unique class of materials, their applications remain virtually hypothetical. To overcome this shortcoming, a sol-gel based route is introduced that allows access to microwires in the range of tens of micrometers. Thorough structural characterization through XRD, SEM, EDS, and AFM demonstrates a successful synthesis of carbonaceous Cr2GaC wires, and advanced low temperature electronic transport measurements revealed resistivity behavior dominated by amorphous carbon. The tunability of electronic behavior of the obtained microwires is shown by a halide post-synthesis treatment, allowing purposeful engineering of the microwires' electrical conductivity. Raman studies revealed the polyanionic nature of the intercalated halides and a slow decrease in halide concentration was concluded from time-dependent conductivity measurements. Based on these findings, the process is considered a viable candidate for fabricating chemiresistive halogen gas sensors.

2.
Adv Mater ; 32(50): e2006320, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33175433

RESUMO

Janus crystals represent an exciting class of 2D materials with different atomic species on their upper and lower facets. Theories have predicted that this symmetry breaking induces an electric field and leads to a wealth of novel properties, such as large Rashba spin-orbit coupling and formation of strongly correlated electronic states. Monolayer MoSSe Janus crystals have been synthesized by two methods, via controlled sulfurization of monolayer MoSe2 and via plasma stripping followed thermal annealing of MoS2 . However, the high processing temperatures prevent growth of other Janus materials and their heterostructures. Here, a room-temperature technique for the synthesis of a variety of Janus monolayers with high structural and optical quality is reported. This process involves low-energy reactive radical precursors, which enables selective removal and replacement of the uppermost chalcogen layer, thus transforming classical transition metal dichalcogenides into a Janus structure. The resulting materials show clear mixed character for their excitonic transitions, and more importantly, the presented room-temperature method enables the demonstration of first vertical and lateral heterojunctions of 2D Janus TMDs. The results present significant and pioneering advances in the synthesis of new classes of 2D materials, and pave the way for the creation of heterostructures from 2D Janus layers.

3.
ACS Nano ; 14(11): 15626-15632, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33090763

RESUMO

The family of layered BiTeX (X = Cl, Br, I) compounds are intrinsic Janus semiconductors with giant Rashba-splitting and many exotic surface and bulk physical properties. To date, studies on these materials required mechanical exfoliation from bulk crystals which yielded thick sheets in nonscalable sizes. Here, we report epitaxial synthesis of Janus BiTeCl and BiTeBr sheets through a nanoconversion technique that can produce few triple layers of Rashba semiconductors (<10 nm) on sapphire substrates. The process starts with van der Waals epitaxy of Bi2Te3 sheets on sapphire and converts these sheets to BiTeCl or BiTeBr layers at high temperatures in the presence of chemically reactive BiCl3/BiBr3 inorganic vapor. Systematic Raman, XRD, SEM, EDX, and other studies show that highly crystalline BiTeCl and BiTeBr sheets can be produced on demand. Atomic level growth mechanism is also proposed and discussed to offer further insights into growth process steps. Overall, this work marks the direct deposition of 2D Janus Rashba materials and offers pathways to synthesize other Janus compounds belonging to MXY family members.

4.
Adv Mater ; 32(33): e2002401, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32627918

RESUMO

Newly discovered 2D Janus transition metal dichalcogenides layers have gained much attention from a theory perspective owing to their unique atomic structure and exotic materials properties, but little to no experimental data are available on these materials. Here, experimental and theoretical studies establish the vibrational and optical behavior of 2D Janus S-W-Se and S-Mo-Se monolayers under high pressures for the first time. Chemical vapor deposition (CVD)-grown classical transition metal dichalcogenides (TMD) monolayers are first transferred onto van der Waals (vdW) mica substrates and converted to 2D Janus sheets by surface plasma technique, and then integrated into a 500 µm size diamond anvil cell for high-pressure studies. The results show that 2D Janus layers do not undergo phase transition up to 15 GPa, and in this pressure regime, their vibrational modes exhibit a nonmonotonic response to the applied pressures (dω/dP). Interestingly, these 2D Janus monolayers exhibit unique blueshift in photoluminescence (PL) upon compression, which is in contrast to many other traditional semiconductor materials. Overall theoretical simulations offer in-depth insights and reveal that the overall optical response is a result of competition between the ab-plane (blueshift) and c-axis (redshift) compression. The overall findings shed the very first light on how 2D Janus monolayers respond under extreme pressures and expand the fundamental understanding of these materials.

5.
RSC Adv ; 10(63): 38227-38232, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35517551

RESUMO

We demonstrate the synthesis of layered anisotropic semiconductor GeSe and GeSe2 nanomaterials through low temperature (∼400 °C) and atmospheric pressure chemical vapor deposition using halide based precursors. Results show that GeI2 and H2Se precursors successfully react in the gas-phase and nucleate on a variety of target substrates including sapphire, Ge, GaAs, or HOPG. Layer-by-layer growth takes place after nucleation to form layered anisotropic materials. Detailed SEM, EDS, XRD, and Raman spectroscopy measurements together with systematic CVD studies reveal that the substrate temperature, selenium partial pressure, and the substrate type ultimately dictate the resulting stoichiometry and phase of these materials. Results from this work introduce the phase control of Ge and Se based nanomaterials (GeSe and GeSe2) using halide based CVD precursors at ATM pressures and low temperatures. Overall findings also extend our fundamental understanding of their growth by making the first attempt to correlate growth parameters to resulting competing phases of Ge-Se based materials.

6.
Nanoscale Adv ; 2(4): 1443-1448, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132307

RESUMO

We demonstrate a high-pressure soft sputtering technique that can grow large area 1T' phase MoTe2 sheets on HOPG and Al2O3 substrates at temperatures as low as 300 °C. The results show that a single Mo/Te co-sputtering step on heated substrates produces highly defected films as a result of the low Te sticking coefficient. The stoichiometry is significantly improved when a 2-step technique is used, which first co-sputters Mo and Te onto an unheated substrate and then anneals the deposited material to crystalize it into 1T' phase MoTe2. A MoTe2-x 1T' film with the lowest Te vacancy content (x = 0.14) was synthesized using a 300 °C annealing step, but a higher processing temperature was prohibited due to MoTe2 decomposition with an activation energy of 80.7 kJ mol-1. However, additional ex situ thermal processing at ∼1 torr tellurium pressure can further reduce the Te-vacancy (VTe) concentration, resulting in an improvement in the composition from MoTe1.86 to MoTe1.9. Hall measurements indicate that the films produced with the 2-step in situ process are n-type with a carrier concentration of 4.6 × 1014 cm-2 per layer, presumably from the large VTe concentration stabilizing the 1T' over the 2H phase. Our findings (a) demonstrate that large scale synthesis of tellurium based vdW materials is possible using industrial growth and processing techniques and (b) accentuate the challenges in producing stoichiometric MoTe2 thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...