Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39026708

RESUMO

Autism spectrum disorder (ASD) comprises a group of neurodevelopmental conditions currently diagnosed by behavioral assessment in childhood, with reported underdiagnosis in females. Though diagnosis in early life is linked to improved outcomes, we currently lack objective screening tools for newborns. To address this gap, we sought to identify a sex-specific DNA methylation signature for ASD using perinatal tissues that reflect dysregulation in the brain. DNA methylation was assayed from ASD and typically developing (TD) newborn blood, umbilical cord blood, placenta, and post-mortem cortex samples using whole genome bisulfite sequencing (WGBS) in a total of 511 samples. We found that methylation levels of differentially methylated regions (DMRs) differentiated samples by ASD diagnosis in females more than males across the perinatal tissues. We tested three theories for ASD sex differences in newborn blood, finding epigenetic support for an X chromosome-related female protective effect, as well as a high replication rate of DMRs (48.1%) in females across two independent cohorts. In our pan-tissue analysis, three genes (X-linked BCOR , GALNT9 , OPCML ) mapped to ASD DMRs replicated in all four female tissues. ASD DMRs from all tissues were enriched for neuro-related processes (females) and SFARI ASD-risk genes (females and males). Overall, we found a highly replicated methylation signature of ASD in females across perinatal tissues that reflected dysregulation in the brain and involvement of X chromosome epigenetics. This comparative study of perinatal tissues shows the promise of newborn blood DNA methylation biomarkers for early detection of females at risk for ASD and emphasizes the importance of sex-stratification in ASD studies.

2.
bioRxiv ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38798575

RESUMO

Dominant X-linked diseases are uncommon due to female X chromosome inactivation (XCI). While random XCI usually protects females against X-linked mutations, Rett syndrome (RTT) is a female neurodevelopmental disorder caused by heterozygous MECP2 mutation. After 6-18 months of typical neurodevelopment, RTT girls undergo poorly understood regression. We performed longitudinal snRNA-seq on cerebral cortex in a construct-relevant Mecp2e1 mutant mouse model of RTT, revealing transcriptional effects of cell type, mosaicism, and sex on progressive disease phenotypes. Across cell types, we observed sex differences in the number of differentially expressed genes (DEGs) with 6x more DEGs in mutant females than males. Unlike males, female DEGs emerged prior to symptoms, were enriched for homeostatic gene pathways in distinct cell types over time, and correlated with disease phenotypes and human RTT cortical cell transcriptomes. Non-cell-autonomous effects were prominent and dynamic across disease progression of Mecp2e1 mutant females, indicating wild-type-expressing cells normalizing transcriptional homeostasis. These results improve understanding of RTT progression and treatment.

3.
Commun Biol ; 4(1): 1408, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916612

RESUMO

Rett syndrome (RTT) is a regressive neurodevelopmental disorder in girls, characterized by multisystem complications including gut dysbiosis and altered metabolism. While RTT is known to be caused by mutations in the X-linked gene MECP2, the intermediate molecular pathways of progressive disease phenotypes are unknown. Mecp2 deficient rodents used to model RTT pathophysiology in most prior studies have been male. Thus, we utilized a patient-relevant mouse model of RTT to longitudinally profile the gut microbiome and metabolome across disease progression in both sexes. Fecal metabolites were altered in Mecp2e1 mutant females before onset of neuromotor phenotypes and correlated with lipid deficiencies in brain, results not observed in males. Females also displayed altered gut microbial communities and an inflammatory profile that were more consistent with RTT patients than males. These findings identify new molecular pathways of RTT disease progression and demonstrate the relevance of further study in female Mecp2 animal models.


Assuntos
Progressão da Doença , Microbioma Gastrointestinal , Metaboloma , Síndrome de Rett/fisiopatologia , Animais , Modelos Animais de Doenças , Fezes/química , Feminino , Masculino , Síndrome de Rett/genética , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...