Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 24(6): 872-884, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668135

RESUMO

Mitochondrial metabolites regulate leukaemic and normal stem cells by affecting epigenetic marks. How mitochondrial enzymes localize to the nucleus to control stem cell function is less understood. We discovered that the mitochondrial metabolic enzyme hexokinase 2 (HK2) localizes to the nucleus in leukaemic and normal haematopoietic stem cells. Overexpression of nuclear HK2 increases leukaemic stem cell properties and decreases differentiation, whereas selective nuclear HK2 knockdown promotes differentiation and decreases stem cell function. Nuclear HK2 localization is phosphorylation-dependent, requires active import and export, and regulates differentiation independently of its enzymatic activity. HK2 interacts with nuclear proteins regulating chromatin openness, increasing chromatin accessibilities at leukaemic stem cell-positive signature and DNA-repair sites. Nuclear HK2 overexpression decreases double-strand breaks and confers chemoresistance, which may contribute to the mechanism by which leukaemic stem cells resist DNA-damaging agents. Thus, we describe a non-canonical mechanism by which mitochondrial enzymes influence stem cell function independently of their metabolic function.


Assuntos
Hexoquinase , Leucemia Mieloide Aguda , Cromatina/metabolismo , DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo
2.
Nat Commun ; 13(1): 1895, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393420

RESUMO

Breast cancer risk for carriers of BRCA1 pathological variants is modified by genetic factors. Genetic variation in HMMR may contribute to this effect. However, the impact of risk modifiers on cancer biology remains undetermined and the biological basis of increased risk is poorly understood. Here, we depict an interplay of molecular, cellular, and tissue microenvironment alterations that increase BRCA1-associated breast cancer risk. Analysis of genome-wide association results suggests that diverse biological processes, including links to BRCA1-HMMR profiles, influence risk. HMMR overexpression in mouse mammary epithelium increases Brca1-mutant tumorigenesis by modulating the cancer cell phenotype and tumor microenvironment. Elevated HMMR activates AURKA and reduces ARPC2 localization in the mitotic cell cortex, which is correlated with micronucleation and activation of cGAS-STING and non-canonical NF-κB signaling. The initial tumorigenic events are genomic instability, epithelial-to-mesenchymal transition, and tissue infiltration of tumor-associated macrophages. The findings reveal a biological foundation for increased risk of BRCA1-associated breast cancer.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Proteínas da Matriz Extracelular , Receptores de Hialuronatos , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Animais , Proteína BRCA1/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Proteínas da Matriz Extracelular/genética , Feminino , Estudo de Associação Genômica Ampla , Heterozigoto , Humanos , Receptores de Hialuronatos/genética , Camundongos , Microambiente Tumoral/genética
3.
EMBO Mol Med ; 13(9): e13929, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34378323

RESUMO

Inhibition of mTOR is the standard of care for lymphangioleiomyomatosis (LAM). However, this therapy has variable tolerability and some patients show progressive decline of lung function despite treatment. LAM diagnosis and monitoring can also be challenging due to the heterogeneity of symptoms and insufficiency of non-invasive tests. Here, we propose monoamine-derived biomarkers that provide preclinical evidence for novel therapeutic approaches. The major histamine-derived metabolite methylimidazoleacetic acid (MIAA) is relatively more abundant in LAM plasma, and MIAA values are independent of VEGF-D. Higher levels of histamine are associated with poorer lung function and greater disease burden. Molecular and cellular analyses, and metabolic profiling confirmed active histamine signaling and metabolism. LAM tumorigenesis is reduced using approved drugs targeting monoamine oxidases A/B (clorgyline and rasagiline) or histamine H1 receptor (loratadine), and loratadine synergizes with rapamycin. Depletion of Maoa or Hrh1 expression, and administration of an L-histidine analog, or a low L-histidine diet, also reduce LAM tumorigenesis. These findings extend our knowledge of LAM biology and suggest possible ways of improving disease management.


Assuntos
Neoplasias Pulmonares , Linfangioleiomiomatose , Biomarcadores , Histamina , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Linfangioleiomiomatose/tratamento farmacológico , Transdução de Sinais
5.
Oncogene ; 40(17): 3001-3014, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33716297

RESUMO

The principle of synthetic lethality, which refers to the loss of viability resulting from the disruption of two genes, which, individually, do not cause lethality, has become an attractive target approach due to the development and clinical success of Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi). In this review, we present the most recent findings on the use of PARPi in the clinic, which are currently approved for second-line therapy for advanced ovarian and breast cancer associated with mutations of BRCA1 or BRCA2 (BRCA1/2) genes. PARPi efficacy, however, appears to be limited by acquired and inherent resistance, highlighting the need for alternative and synergistic targets to eliminate these tumors. Here, we explore other identified synthetic lethal interactors of BRCA1/2, including DNA polymerase theta (POLQ), Fanconi anemia complementation group D2 (FANDC2), radiation sensitive 52 (RAD52), Flap structure-specific endonuclease 1 (FEN1), and apurinic/apyrimidinic endodeoxyribonuclease 2 (APE2), as well as other protein and nonprotein targets, for BRCA1/2-mutated cancers and their implications for future therapies. A wealth of information now exists for phenotypic and functional characterization of these novel synthetic lethal interactors of BRCA1/2, and leveraging these findings can pave the way for the development of new targeted therapies for patients suffering from these cancers.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Mutações Sintéticas Letais , Humanos
6.
Nature ; 585(7824): 298-302, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32669707

RESUMO

Proteins are manufactured by ribosomes-macromolecular complexes of protein and RNA molecules that are assembled within major nuclear compartments called nucleoli1,2. Existing models suggest that RNA polymerases I and III (Pol I and Pol III) are the only enzymes that directly mediate the expression of the ribosomal RNA (rRNA) components of ribosomes. Here we show, however, that RNA polymerase II (Pol II) inside human nucleoli operates near genes encoding rRNAs to drive their expression. Pol II, assisted by the neurodegeneration-associated enzyme senataxin, generates a shield comprising triplex nucleic acid structures known as R-loops at intergenic spacers flanking nucleolar rRNA genes. The shield prevents Pol I from producing sense intergenic noncoding RNAs (sincRNAs) that can disrupt nucleolar organization and rRNA expression. These disruptive sincRNAs can be unleashed by Pol II inhibition, senataxin loss, Ewing sarcoma or locus-associated R-loop repression through an experimental system involving the proteins RNaseH1, eGFP and dCas9 (which we refer to as 'red laser'). We reveal a nucleolar Pol-II-dependent mechanism that drives ribosome biogenesis, identify disease-associated disruption of nucleoli by noncoding RNAs, and establish locus-targeted R-loop modulation. Our findings revise theories of labour division between the major RNA polymerases, and identify nucleolar Pol II as a major factor in protein synthesis and nuclear organization, with potential implications for health and disease.


Assuntos
Nucléolo Celular/enzimologia , Nucléolo Celular/genética , DNA Ribossômico/genética , RNA Polimerase II/metabolismo , RNA não Traduzido/biossíntese , RNA não Traduzido/genética , Ribossomos/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/fisiologia , DNA Helicases/metabolismo , DNA Intergênico/genética , Humanos , Enzimas Multifuncionais/metabolismo , Biossíntese de Proteínas , Estruturas R-Loop , RNA Helicases/metabolismo , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase I/metabolismo , Ribonuclease H/metabolismo , Ribossomos/química , Ribossomos/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
7.
iScience ; 23(7): 101296, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32622267

RESUMO

Proper immune system function hinders cancer development, but little is known about whether genetic variants linked to cancer risk alter immune cells. Here, we report 57 cancer risk loci associated with differences in immune and/or stromal cell contents in the corresponding tissue. Predicted target genes show expression and regulatory associations with immune features. Polygenic risk scores also reveal associations with immune and/or stromal cell contents, and breast cancer scores show consistent results in normal and tumor tissue. SH2B3 links peripheral alterations of several immune cell types to the risk of this malignancy. Pleiotropic SH2B3 variants are associated with breast cancer risk in BRCA1/2 mutation carriers. A retrospective case-cohort study indicates a positive association between blood counts of basophils, leukocytes, and monocytes and age at breast cancer diagnosis. These findings broaden our knowledge of the role of the immune system in cancer and highlight promising prevention strategies for individuals at high risk.

8.
Nat Immunol ; 21(1): 54-64, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819256

RESUMO

Ptpn6 is a cytoplasmic phosphatase that functions to prevent autoimmune and interleukin-1 (IL-1) receptor-dependent, caspase-1-independent inflammatory disease. Conditional deletion of Ptpn6 in neutrophils (Ptpn6∆PMN) is sufficient to initiate IL-1 receptor-dependent cutaneous inflammatory disease, but the source of IL-1 and the mechanisms behind IL-1 release remain unclear. Here, we investigate the mechanisms controlling IL-1α/ß release from neutrophils by inhibiting caspase-8-dependent apoptosis and Ripk1-Ripk3-Mlkl-regulated necroptosis. Loss of Ripk1 accelerated disease onset, whereas combined deletion of caspase-8 and either Ripk3 or Mlkl strongly protected Ptpn6∆PMN mice. Ptpn6∆PMN neutrophils displayed increased p38 mitogen-activated protein kinase-dependent Ripk1-independent IL-1 and tumor necrosis factor production, and were prone to cell death. Together, these data emphasize dual functions for Ptpn6 in the negative regulation of p38 mitogen-activated protein kinase activation to control tumor necrosis factor and IL-1α/ß expression, and in maintaining Ripk1 function to prevent caspase-8- and Ripk3-Mlkl-dependent cell death and concomitant IL-1α/ß release.


Assuntos
Apoptose/imunologia , Caspase 8/imunologia , Neutrófilos/imunologia , Proteínas Quinases/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Caspase 8/genética , Células Cultivadas , Deleção de Genes , Inflamação/imunologia , Interleucina-1/imunologia , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Receptores Tipo I de Interleucina-1/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Leukemia ; 33(1): 37-51, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29884901

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy for which new therapeutic approaches are required. One such potential therapeutic strategy is to target the ubiquitin-like modifier-activating enzyme 1 (UBA1), the initiating enzyme in the ubiquitylation cascade in which proteins are tagged with ubiquitin moieties to regulate their degradation or function. Here, we evaluated TAK-243, a first-in-class UBA1 inhibitor, in preclinical models of AML. In AML cell lines and primary AML samples, TAK-243 induced cell death and inhibited clonogenic growth. In contrast, normal hematopoietic progenitor cells were more resistant. TAK-243 preferentially bound to UBA1 over the related E1 enzymes UBA2, UBA3, and UBA6 in intact AML cells. Inhibition of UBA1 with TAK-243 decreased levels of ubiquitylated proteins, increased markers of proteotoxic stress and DNA damage stress. In vivo, TAK-243 reduced leukemic burden and targeted leukemic stem cells without evidence of toxicity. Finally, we selected populations of AML cells resistant to TAK-243 and identified missense mutations in the adenylation domain of UBA1. Thus, our data demonstrate that TAK-243 targets AML cells and stem cells and support a clinical trial of TAK-243 in this patient population. Moreover, we provide insight into potential mechanisms of acquired resistance to UBA1 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Nucleosídeos/farmacologia , Sulfonamidas/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos SCID , Pirazóis , Pirimidinas , Sulfetos , Células Tumorais Cultivadas
10.
J Clin Invest ; 128(10): 4525-4542, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222135

RESUMO

The E3 ubiquitin ligase RNF8 plays critical roles in maintaining genomic stability by promoting the repair of DNA double-strand breaks (DSBs) through ubiquitin signaling. Abnormal activation of Notch signaling and defective repair of DSBs promote breast cancer risk. Here, we found that low expression of the full-length RNF8 correlated with poor prognosis for breast cancer patients. Our data revealed that in addition to its role in the repair of DSBs, RNF8 regulated Notch1 signaling and cell-fate determination of mammary luminal progenitors. Mechanistically, RNF8 acted as a negative regulator of Notch signaling by ubiquitylating the active NOTCH1 protein (N1ICD), leading to its degradation. Consistent with abnormal activation of Notch signaling and impaired repair of DSBs in Rnf8-mutant mammary epithelial cells, we observed increased risk of mammary tumorigenesis in mouse models for RNF8 deficiency. Notably, deficiency of RNF8 sensitized breast cancer cells to combination of pharmacological inhibitors of Notch signaling and poly(ADP-ribose) polymerase (PARP), suggesting implications for treatment of breast cancer associated with impaired RNF8 expression or function.


Assuntos
Carcinogênese/metabolismo , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/metabolismo , Proteínas de Neoplasias/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/biossíntese , Animais , Carcinogênese/genética , Carcinogênese/patologia , Quebras de DNA de Cadeia Dupla , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Receptor Notch1/genética , Ubiquitina-Proteína Ligases/genética
11.
Sci Signal ; 11(546)2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181240

RESUMO

Neutrophil extracellular trap (NET) formation can generate short-term, functional anucleate cytoplasts and trigger loss of cell viability. We demonstrated that the necroptotic cell death effector mixed lineage kinase domain-like (MLKL) translocated from the cytoplasm to the plasma membrane and stimulated downstream NADPH oxidase-independent ROS production, loss of cytoplasmic granules, breakdown of the nuclear membrane, chromatin decondensation, histone hypercitrullination, and extrusion of bacteriostatic NETs. This process was coordinated by receptor-interacting protein kinase-1 (RIPK1), which activated the caspase-8-dependent apoptotic or RIPK3/MLKL-dependent necroptotic death of mouse and human neutrophils. Genetic deficiency of RIPK3 and MLKL prevented NET formation but did not prevent cell death, which was because of residual caspase-8-dependent activity. Peptidylarginine deiminase 4 (PAD4) was activated downstream of RIPK1/RIPK3/MLKL and was required for maximal histone hypercitrullination and NET extrusion. This work defines a distinct signaling network that activates PAD4-dependent NET release for the control of methicillin-resistant Staphylococcus aureus (MRSA) infection.


Assuntos
Apoptose , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Proteínas Quinases/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Animais , Caspase 8/genética , Caspase 8/metabolismo , Células Cultivadas , Armadilhas Extracelulares/genética , Histonas/metabolismo , Humanos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Neutrófilos/microbiologia , Neutrófilos/ultraestrutura , Proteínas Quinases/genética , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
12.
Nat Med ; 24(8): 1128-1135, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988126

RESUMO

Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death1-3. Oxidative stress is believed to be critical in this disease pathogenesis4-6, although the exact mechanisms remain enigmatic. Protein S-glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX)7. It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking Glrx were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of Glrx in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Proteínas/metabolismo , Animais , Feminino , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução
13.
Immunity ; 45(3): 513-526, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27523270

RESUMO

The kinases RIPK1 and RIPK3 and the pseudo-kinase MLKL have been identified as key regulators of the necroptotic cell death pathway, although a role for MLKL within the whole animal has not yet been established. Here, we have shown that MLKL deficiency rescued the embryonic lethality caused by loss of Caspase-8 or FADD. Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice were viable and fertile but rapidly developed severe lymphadenopathy, systemic autoimmune disease, and thrombocytopenia. These morbidities occurred more rapidly and with increased severity in Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice compared to Casp8(-/-)Ripk3(-/-) or Fadd(-/-)Ripk3(-/-) mice, respectively. These results demonstrate that MLKL is an essential effector of aberrant necroptosis in embryos caused by loss of Caspase-8 or FADD. Furthermore, they suggest that RIPK3 and/or MLKL may exert functions independently of necroptosis. It appears that non-necroptotic functions of RIPK3 contribute to the lymphadenopathy, autoimmunity, and excess cytokine production that occur when FADD or Caspase-8-mediated apoptosis is abrogated.


Assuntos
Apoptose/fisiologia , Doenças Autoimunes/metabolismo , Morte Celular/fisiologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Caspase 8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo
14.
J Immunol ; 191(12): 5840-7, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24244021

RESUMO

Germinal centers (GCs) are clusters of activated B cells that form in secondary lymphoid organs during a T-dependent immune response. B cells enter GCs and become rapidly proliferating centroblasts that express the enzyme activation-induced deaminase (AID) to undergo somatic hypermutation and class-switch recombination. Centroblasts then mature into centrocytes to undergo clonal selection. Within the GC, the highest affinity B cell clones are selected to mature into memory or plasma cells while lower affinity clones undergo apoptosis. We reported previously that murine Aicda(-/-) GC B cells have enhanced viability and accumulate in GCs. We now show that murine Aicda(-/-) GC B cells accumulate as centrocytes and inefficiently generate plasma cells. The reduced rate of plasma cell formation was not due to an absence of AID-induced DNA lesions. In addition, we show that the deletion of caspase 8 specifically in murine GC-B cells results in larger GCs and a delay in affinity maturation, demonstrating the importance of apoptosis in GC homeostasis and clonal selection.


Assuntos
Apoptose/fisiologia , Síndrome Linfoproliferativa Autoimune/imunologia , Subpopulações de Linfócitos B/imunologia , Caspase 8/fisiologia , Seleção Clonal Mediada por Antígeno , Citidina Desaminase/fisiologia , Centro Germinativo/imunologia , Síndromes de Imunodeficiência/patologia , Transferência Adotiva , Animais , Antígenos/imunologia , Subpopulações de Linfócitos B/patologia , Caspase 8/genética , Divisão Celular , Citidina Desaminase/deficiência , Citidina Desaminase/genética , Quebras de DNA de Cadeia Dupla , Centro Germinativo/patologia , Imunização , Switching de Imunoglobulina , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmócitos/patologia , Quimera por Radiação , Receptores de Antígenos de Linfócitos B/imunologia , Hipermutação Somática de Imunoglobulina
15.
Cell Rep ; 4(4): 776-90, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23972991

RESUMO

For years, the term "apoptosis" was used synonymously with programmed cell death. However, it was recently discovered that receptor interacting protein 3 (RIP3)-dependent "necroptosis" represents an alternative programmed cell death pathway activated in many inflamed tissues. Here, we show in a genetic model of chronic hepatic inflammation that activation of RIP3 limits immune responses and compensatory proliferation of liver parenchymal cells (LPC) by inhibiting Caspase-8-dependent activation of Jun-(N)-terminal kinase in LPC and nonparenchymal liver cells. In this way, RIP3 inhibits intrahepatic tumor growth and impedes the Caspase-8-dependent establishment of specific chromosomal aberrations that mediate resistance to tumor-necrosis-factor-induced apoptosis and underlie hepatocarcinogenesis. Moreover, RIP3 promotes the development of jaundice and cholestasis, because its activation suppresses compensatory proliferation of cholangiocytes and hepatic stem cells. These findings demonstrate a function of RIP3 in regulating carcinogenesis and cholestasis. Controlling RIP3 or Caspase-8 might represent a chemopreventive or therapeutic strategy against hepatocellular carcinoma and biliary disease.


Assuntos
Carcinogênese/metabolismo , Caspase 8/metabolismo , Proliferação de Células , Colestase/metabolismo , Fígado/metabolismo , MAP Quinase Quinase 4/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Caspase 8/genética , Colestase/patologia , Hepatócitos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Icterícia/metabolismo , Icterícia/patologia , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MAP Quinase Quinase 4/genética , Camundongos , Camundongos Knockout , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Células-Tronco/metabolismo
16.
Nature ; 471(7338): 363-7, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21368763

RESUMO

Caspase-8 has two opposing biological functions--it promotes cell death by triggering the extrinsic pathway of apoptosis, but also has a survival activity, as it is required for embryonic development, T-lymphocyte activation, and resistance to necrosis induced by tumour necrosis factor-α (TNF-α) and related family ligands. Here we show that development of caspase-8-deficient mice is completely rescued by ablation of receptor interacting protein kinase-3 (RIPK3). Adult animals lacking both caspase-8 and RIPK3 display a progressive lymphoaccumulative disease resembling that seen with defects in CD95 or CD95-ligand (also known as FAS and FASLG, respectively), and resist the lethal effects of CD95 ligation in vivo. We have found that caspase-8 prevents RIPK3-dependent necrosis without inducing apoptosis by functioning in a proteolytically active complex with FLICE-like inhibitory protein long (FLIP(L), also known as CFLAR), and this complex is required for the protective function.


Assuntos
Biocatálise , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose , Caspase 8/genética , Inibidores de Caspase , Linhagem Celular , Feminino , Masculino , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fenótipo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Serpinas/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Virais/farmacologia , Receptor fas/deficiência , Receptor fas/metabolismo
17.
Immunity ; 30(1): 56-66, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19119023

RESUMO

Apoptotic death of hepatocytes, a contributor to many chronic and acute liver diseases, can be a consequence of overactivation of the immune system and is often mediated by TNFalpha. Injection with lipopolysaccharide (LPS) plus the transcriptional inhibitor D(+)-galactosamine (GalN) or mitogenic T cell activation causes fatal hepatocyte apoptosis in mice, which is mediated by TNFalpha, but the effector mechanisms remain unclear. Our analysis of gene-targeted mice showed that caspase-8 is essential for hepatocyte killing in both settings. Loss of Bid, the proapoptotic BH3-only protein activated by caspase-8 and essential for Fas ligand-induced hepatocyte killing, resulted only in a minor reduction of liver damage. However, combined loss of Bid and another BH3-only protein, Bim, activated by c-Jun N-terminal kinase (JNK), protected mice from LPS+GalN-induced hepatitis. These observations identify caspase-8 and the BH3-only proteins Bid and Bim as potential therapeutic targets for treatment of inflammatory liver diseases.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 8/metabolismo , Doença Hepática Induzida por Substâncias e Drogas , Hepatócitos/patologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Proteína 11 Semelhante a Bcl-2 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Necrose Tumoral alfa/metabolismo
18.
J Exp Med ; 202(3): 405-13, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16043518

RESUMO

Fas-associated death domain (FADD) and caspase-8 are key signal transducers for death receptor-induced apoptosis, whereas cellular FLICE-inhibitory protein (cFLIP) antagonizes this process. Interestingly, FADD and caspase-8 also play a role in T cell development and T cell receptor (TCR)-mediated proliferative responses. To investigate the underlying mechanism, we generated cFLIP-deficient T cells by reconstituting Rag-/- blastocysts with cFLIP-deficient embryonic stem cells. These Rag chimeric mutant mice (rcFLIP-/-) had severely reduced numbers of T cells in the thymus, lymph nodes, and spleen, although mature T lymphocytes did develop. Similar to FADD- or caspase-8-deficient cells, rcFLIP-/- T cells were impaired in proliferation in response to TCR stimulation. Further investigation revealed that cFLIP is required for T cell survival, as well as T cell cycling in response to TCR stimulation. Interestingly, some signaling pathways from the TCR complex appeared competent, as CD3 plus CD28 cross-linking was capable of activating the ERK pathway in rcFLIP-/- T cells. We demonstrate an essential role for cFLIP in T cell function.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Linfócitos T/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Antígenos CD28/metabolismo , Complexo CD3/metabolismo , Caspase 8 , Caspases/metabolismo , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína de Domínio de Morte Associada a Fas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...