Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 4): 127051, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37748589

RESUMO

The field of tissue engineering has recently emerged as one of the most promising approaches to address the limitations of conventional tissue replacements for severe injuries. This study introduces a chitosan-coated porous skin scaffold based on sodium carboxymethyl cellulose (NaCMC) and sodium alginate (SA) hydrogels, incorporating allantoin (AL) as an antibacterial agent. The NaCMC/SA hydrogel was cross-linked with epichlorohydrin (ECH) and freeze-dried to obtain a three-dimensional porous structure. The coated and non-coated scaffolds underwent comprehensive evaluation and characterization through various in-vitro analyses, including SEM imaging, swelling, degradation, and mechanical assessments. Furthermore, the scaffolds were studied regarding their allantoin (AL) release profiles, antibacterial properties, cell viability, and cell adhesion. The in-vitro analyses revealed that adding a chitosan (CS) coating and allantoin (AL) to the NaCMC/SA hydrogel significantly improved the scaffolds' antibacterial properties and cell viability. It was observed that the NaCMC:SA ratio and ECH concentration influenced the swelling capacity, biodegradation, drug release profile, and mechanical properties of the scaffolds. Samples with higher NaCMC content exhibited enhanced swelling capacity, more controlled allantoin (AL) release, and improved mechanical strength. Furthermore, the in-vivo results demonstrated that the proposed skin scaffold exhibited satisfactory biocompatibility and supported cell viability during wound healing in Wistar rats, highlighting its potential for clinical applications.


Assuntos
Quitosana , Ratos , Animais , Quitosana/química , Alantoína , Alicerces Teciduais/química , Alginatos/química , Ratos Wistar , Cicatrização , Antibacterianos/farmacologia , Hidrogéis/química
2.
Talanta ; 254: 124125, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462283

RESUMO

Investigation and analysis of circulating tumor cells (CTCs) have been valuable resources for detecting and diagnosing cancer in its early stages. Recently, enumeration and separation of CTCs via microfluidic devices have attracted significant attention due to their low cost and easy setup. In this study, novel microfluidic devices based on size-dependent cell-sorting with a trapezoidal cross-section and elliptic spiral configurations were proposed to reach label-free, ultra-fast CTCs enrichment. Firstly, the possibility and quality of separation in the devices were evaluated via a numerical simulation. Subsequently, these devices were fabricated to investigate the effects of the altering curvature and the trapezoidal cross-section on the isolation of CTCs from the peripheral blood sample at varying flow rates ranging from 0.5 mL/min to 3.5 mL/min. The experimental results indicated that the flow rate of 2.5 mL/min provided the optimal separation efficiency in the proposed devices, which was in fine agreement with the numerical analysis results. In this experiment, the purity values of CTCs between 88% and 90% were achieved, which is an indicator of the high capability of the proposed devices for the isolation and enrichment of CTCs. This strategy is hoped to overcome the limitations of classical affinity-based CTC separation approaches in the future.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Linhagem Celular Tumoral , Separação Celular/métodos , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...