Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(11): 114706, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910622

RESUMO

We present a microwave correlation measurement system based on two low-cost USB-connected software defined radio dongles modified to operate as coherent receivers by using a common local oscillator. Existing software is used to obtain I/Q samples from both dongles simultaneously at a software tunable frequency. To achieve low noise, we introduce an easy low-noise solution for cryogenic amplification at 600-900 MHz based on single discrete HEMT with 21 dB gain and 7 K noise temperature. In addition, we discuss the quantization effects in a digital correlation measurement and determination of optimal integration time by applying Allan deviation analysis.

2.
Nat Commun ; 7: 12548, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27562246

RESUMO

The existence of vacuum fluctuations is one of the most important predictions of modern quantum field theory. In the vacuum state, fluctuations occurring at different frequencies are uncorrelated. However, if a parameter in the Lagrangian of the field is modulated by an external pump, vacuum fluctuations stimulate spontaneous downconversion processes, creating squeezing between modes symmetric with respect to half of the frequency of the pump. Here we show that by double parametric pumping of a superconducting microwave cavity, it is possible to generate another type of correlation, namely coherence between photons in separate frequency modes. The coherence correlations are tunable by the phases of the pumps and are established by a quantum fluctuation that stimulates the simultaneous creation of two photon pairs. Our analysis indicates that the origin of this vacuum-induced coherence is the absence of which-way information in the frequency space.

3.
Nanoscale ; 7(35): 14747-51, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26284626

RESUMO

We have developed capacitively-transduced nanomechanical resonators using sp(2)-rich diamond-like carbon (DLC) thin films as conducting membranes. The electrically conducting DLC films were grown by physical vapor deposition at a temperature of 500 °C. Characterizing the resonant response, we find a larger than expected frequency tuning that we attribute to the membrane being buckled upwards, away from the bottom electrode. The possibility of using buckled resonators to increase frequency tuning can be of advantage in rf applications such as tunable GHz filters and voltage-controlled oscillators.

4.
Nano Lett ; 14(6): 3009-13, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24842236

RESUMO

Using electrical transport experiments and shot noise thermometry, we find strong evidence that "supercollision" scattering processes by flexural modes are the dominant electron-phonon energy transfer mechanism in high-quality, suspended graphene around room temperature. The power law dependence of the electron-phonon coupling changes from cubic to quintic with temperature. The change of the temperature exponent by two is reflected in the quadratic dependence on chemical potential, which is an inherent feature of two-phonon quantum processes.

5.
Nature ; 507(7490): 45, 47, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24598635
6.
Sci Rep ; 2: 645, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22966420

RESUMO

Routers, switches, and repeaters are essential components of modern information-processing systems. Similar devices will be needed in future superconducting quantum computers. In this work we investigate experimentally the time evolution of Autler-Townes splitting in a superconducting phase qubit under the application of a control tone resonantly coupled to the second transition. A three-level model that includes independently determined parameters for relaxation and dephasing gives excellent agreement with the experiment. The results demonstrate that the qubit can be used as a ON/OFF switch with 100 ns operating time-scale for the reflection/transmission of photons coming from an applied probe microwave tone. The ON state is realized when the control tone is sufficiently strong to generate an Autler-Townes doublet, suppressing the absorption of the probe tone photons and resulting in a maximum of transmission.


Assuntos
Algoritmos , Modelos Químicos , Fótons , Processamento de Sinais Assistido por Computador/instrumentação , Simulação por Computador , Cinética , Teoria Quântica , Reprodutibilidade dos Testes
7.
Nat Commun ; 3: 987, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22871806

RESUMO

The coupling of distinct systems underlies nearly all physical phenomena. A basic instance is that of interacting harmonic oscillators, giving rise to, for example, the phonon eigenmodes in a lattice. Of particular importance are the interactions in hybrid quantum systems, which can combine the benefits of each part in quantum technologies. Here we investigate a hybrid optomechanical system having three degrees of freedom, consisting of a microwave cavity and two micromechanical beams with closely spaced frequencies around 32 MHz and no direct interaction. We record the first evidence of tripartite optomechanical mixing, implying that the eigenmodes are combinations of one photonic and two phononic modes. We identify an asymmetric dark mode having a long lifetime. Simultaneously, we operate the nearly macroscopic mechanical modes close to the motional quantum ground state, down to 1.8 thermal quanta, achieved by back-action cooling. These results constitute an important advance towards engineering of entangled motional states.

8.
Nano Lett ; 12(1): 198-202, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22141577

RESUMO

We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f = 5-6 GHz producing modulation sidebands at f ± f(m). A mechanical resonance frequency up to f(m) = 178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of dc bias voltage V(dc) indicates that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large V(dc).


Assuntos
Condutometria/instrumentação , Grafite/química , Sistemas Microeletromecânicos/instrumentação , Impressão Molecular/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Radiometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Tamanho da Partícula , Doses de Radiação , Ondas de Rádio
9.
Nanotechnology ; 22(12): 125203, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21317499

RESUMO

A scheme for measuring small intrinsic critical currents I(c) in nanoscale devices is described. Changes in Josephson inductance L(J) are converted to frequency variations that are recorded via microwave reflection measurements at 700-800 MHz. The critical current is determined from the frequency shift of the reflection magnitude at zero phase bias assuming a sinusoidal current-phase relation. The method is used to study a multiwalled carbon nanotube transistor with Pd/Nb contacts inside a resistive on-chip environment. We observe gate-tunable critical currents up to I(c) ∼ 8 nA corresponding to L(J) > 40 nH. The method presented is also applicable to devices shunted by closed superconducting loops.

10.
Nano Lett ; 10(12): 4884-9, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21053964

RESUMO

The detection of mechanical vibrations near the quantum limit is a formidable challenge since the displacement becomes vanishingly small when the number of phonon quanta tends toward zero. An interesting setup for on-chip nanomechanical resonators is that of coupling them to electrical microwave cavities for detection and manipulation. Here we show how to achieve a large cavity coupling energy of up to (2π) 1 MHz/nm for metallic beam resonators at tens of megahertz. We used focused ion beam (FIB) cutting to produce uniform slits down to 10 nm, separating patterned resonators from their gate electrodes, in suspended aluminum films. We measured the thermomechanical vibrations down to a temperature of 25 mK, and we obtained a low number of about 20 phonons at the equilibrium bath temperature. The mechanical properties of Al were excellent after FIB cutting, and we recorded a quality factor of Q ∼ 3 × 10(5) for a 67 MHz resonator at a temperature of 25 mK. Between 0.2 and 2 K we find that the dissipation is linearly proportional to the temperature.

11.
Nature ; 459(7249): 923-4, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19536252
12.
Phys Rev Lett ; 103(19): 193601, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365921

RESUMO

When a three-level quantum system is irradiated by an intense coupling field resonant with one of the three possible transitions, the absorption peak of an additional probe field involving the remaining level is split. This process is known in quantum optics as the Autler-Townes effect. We observe these phenomena in a superconducting Josephson phase qubit, which can be considered an "artificial atom" with a multilevel quantum structure. The spectroscopy peaks can be explained reasonably well by a simple three-level Hamiltonian model. Simulation of a more complete model (including dissipation, higher levels, and cross coupling) provides excellent agreement with all of the experimental data.

13.
Phys Rev Lett ; 93(6): 066805, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15323652

RESUMO

We demonstrate a sensitive method of charge detection based on radio-frequency readout of the Josephson inductance of a superconducting single-electron transistor. Charge sensitivity 1.4 x 10(-4) e/square root Hz, limited by a preamplifier, is achieved in an operation mode which takes advantage of the nonlinearity of the Josephson potential. Owing to reactive readout, our setup has more than 2 orders of magnitude lower dissipation than the existing method of radio-frequency electrometry. With an optimized sample, we expect uncoupled energy sensitivity below variant Planck's over h in the same experimental scheme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...