Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 75: 29-38, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30711824

RESUMO

In eukaryotes and most bacteria, the MutS1/MutL-dependent mismatch repair system (MMR) corrects DNA mismatches that arise as replication errors. MutS1 recognizes mismatched DNA and stimulates the nicking endonuclease activity of MutL to incise mismatch-containing DNA. In archaea, there has been no experimental evidence to support the existence of the MutS1/MutL-dependent MMR. Instead, it was revealed that a large part of archaea possess mismatch-specific endonuclease EndoMS, indicating that the EndoMS-dependent MMR is widely adopted in archaea. However, some archaeal genomes encode MutS1 and MutL homologs, and their molecular functions have not been revealed. In this study, we purified and characterized recombinant MutS1 and the C-terminal endonuclease domain of MutL from a methanogenic archaeon Methanosaeta thermophila (mtMutS1 and the mtMutL CTD, respectively). mtMutS1 bound to mismatched DNAs with a higher affinity than to perfectly-matched and other structured DNAs, which resembles the DNA-binding specificities of eukaryotic and bacterial MutS1 homologs. The mtMutL CTD showed a Mn2+/Ni2+/Co2+-dependent nicking endonuclease activity that introduces single-strand breaks into a circular double-stranded DNA. The nicking endonuclease activity of the mtMutL CTD was impaired by mutagenizing the metal-binding motif that is identical to those of eukaryotic and bacterial MutL endonucleases. These results raise the possibility that not only the EndoMS-dependent MMR but also the traditional MutS1/MutL-dependent MMR exist in archaea.


Assuntos
Methanosarcinales/enzimologia , Proteínas MutL/metabolismo , Sequência de Aminoácidos , Reparo de Erro de Pareamento de DNA , Methanosarcinales/metabolismo , Modelos Moleculares , Proteínas MutL/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína
2.
Sci Rep ; 8(1): 4645, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545524

RESUMO

We are now entering a new age of intelligent material development using fine, sustainable polymers from extremophiles. Herein we present an innovative (but simple) means of transforming archaeal poly-γ-glutamate (PGA) into extremely durable polyionic complexes with potent antimicrobial performance. This new supra-polymer material (called PGA/DEQ) was subjected to nuclear magnetic resonance and X-ray diffraction spectroscopies to characterize in structural chemistry. Calorimetric measurements revealed its peculiar thermal properties; to the best of our knowledge, it is one of the most heat-resistant biopolymer-based polyionic complexes developed to date. PGA/DEQ is particularly useful in applications where surface functionalization is important, e.g., antimicrobial coatings. The spontaneously assembled PGA/DEQ coatings (without any additional treatments) were remarkably resistant to certain organic solvents (including chloroform), even at high salt concentrations (theoretically greater than those found in sea water), and various pH values. However, the pH-response tests also implied that the PGA/DEQ coatings could be removed only when concentrated citrate di-salts were used, whereas most crosslinked polymer composites (e.g., thermoset matrices) are difficult to recycle and treat downstream. We also discuss PGA/DEQ-immobilized surfaces that exhibit enigmatic microbicidal mechanisms.


Assuntos
Antibacterianos/química , Archaea/metabolismo , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Escherichia coli/efeitos dos fármacos , Ácido Poliglutâmico/análogos & derivados , Polímeros/química , Antibacterianos/farmacologia , Teste de Materiais , Ácido Poliglutâmico/química
3.
FEBS J ; 284(20): 3470-3483, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28834211

RESUMO

Archaeal DNA recombination mechanism and the related proteins are similar to those in eukaryotes. However, no functional homolog of eukaryotic MutSγ, which recognizes Holliday junction to promote homologous recombination, has been identified in archaea. Hence, the whole molecular mechanism of archaeal homologous recombination has not yet been revealed. In this study, to identify the archaeal functional homolog of MutSγ, we focused on a functionally uncharacterized MutS homolog, MutS5, from a hyperthermophilic archaeon Pyrococcus horikoshii (phMutS5). Archaeal MutS5 has a Walker ATPase motif-containing amino acid sequence that shows similarity to the ATPase domain of MutSγ. It is known that the ATPase domain of MutS homologs is also a dimerization domain. Chemical cross-linking revealed that purified phMutS5 has an ability to dimerize in solution. phMutS5 bound to Holliday junction with a higher affinity than to other branched and linear DNAs, which resembles the DNA-binding specificities of MutSγ and bacterial MutS2, a Holliday junction-resolving MutS homolog. However, phMutS5 has no nuclease activity against branched DNA unlike MutS2. The ATPase activity of phMutS5 was significantly stimulated by the presence of Holliday junction similarly to MutSγ. Furthermore, site-directed mutagenesis revealed that the ATPase activity is dependent on the Walker ATPase motif of the protein. These results suggest that archaeal MutS5 should stabilize the Holliday junction and play a role in homologous recombination, which is analogous to the function of eukaryotic MutSγ.


Assuntos
Proteínas Arqueais/metabolismo , DNA Cruciforme/metabolismo , Eucariotos/metabolismo , Pyrococcus furiosus/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sequência de Bases , Clonagem Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Conformação Proteica , Pyrococcus furiosus/crescimento & desenvolvimento , Recombinação Genética , Alinhamento de Sequência
4.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27815281

RESUMO

l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P)+-dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD+ Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD+/NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the ß-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme. IMPORTANCE: In this study, we determined the three-dimensional structure of l-Trp dehydrogenase, analyzed its various site-directed substitution mutants at residues located in the active site, and obtained the following informative results. Several residues in the active site form a hydrophobic cluster, which may be a part of the hydrophobic core essential for protein folding. To our knowledge, there is no previous report demonstrating that a hydrophobic cluster in the active site of any l-amino acid dehydrogenase may have a critical impact on protein folding. Furthermore, our results suggest that this hydrophobic cluster could strictly accommodate l-Trp. These studies show the structural characteristics of l-Trp dehydrogenase and hence would facilitate novel applications of l-Trp dehydrogenase.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Nostoc/química , Nostoc/enzimologia , Oxirredutases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalização , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Nostoc/genética , Oxirredutases/química , Oxirredutases/metabolismo , Alinhamento de Sequência
5.
Biometals ; 29(3): 527-34, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27013333

RESUMO

Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co(2+), Ni(2+), Mn(2+), Ga(3+), In(3+), and Dy(3+)). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga(3+), In(3+), and Dy(3+)) was far superior to that of any other industrially-versatile PAC materials.


Assuntos
Archaea/química , Metais Pesados/química , Ácido Poliglutâmico/análogos & derivados , Acrilatos/química , Adsorção , Ácido Poliglutâmico/química , Álcool de Polivinil/química , Solubilidade , Propriedades de Superfície , Água/química
6.
Int J Mol Sci ; 16(10): 24588-99, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26501266

RESUMO

Poly-γ-glutamate (PGA) possesses a nylon-like backbone and polyacrylate-like carboxyl groups, and shows an extraordinary solubility in water. In this study, the effective synthesis and structural analysis of some water-insoluble PGA ion-complexes (PGAICs) using cationic surfactants, hexadecylpyridinium (HDP), dodecylpyridinium, benzalkonium and benzetonium, were examined. We demonstrated their spontaneous coating performance to the surfaces of different materials (i.e., plastics, metals, and ceramics) as potent anti-staphylococcal and anti-Candida agents. The tests against Staphylococcus aureus revealed that, regardless of a variety of materials, PGAICs maintained surface antimicrobial activity, even after the water-soaking treatment, whereas those against Candida albicans indicated that, among PGAICs, PGA/HDP complex is most useful as an anti-fungal agent because of its coating stability. Moreover, the log reduction values against Influenza A and B viruses of PGA/HDP-coated surfaces were estimated to be 5.4 and 3.2, respectively, suggesting that it can be dramatically suppressed the infection of influenza. This is to our knowledge the first observation of PGA-based antiviral coatings.


Assuntos
Antibacterianos/líquido cefalorraquidiano , Antifúngicos/química , Antivirais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ácido Poliglutâmico/análogos & derivados , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antivirais/farmacologia , Candida albicans/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Ácido Poliglutâmico/química , Staphylococcus aureus/efeitos dos fármacos
7.
Biochem Biophys Res Commun ; 460(4): 1059-62, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25843804

RESUMO

Extra-chromosomal DNA maintenance (EDM) as an important process in the propagation and genetic engineering of microbes. Bacillus subtilis EdmS (formerly PgsE), a protein comprising 55 amino acids, is a mediator of the EDM process. In this study, the effect of mutation of global regulators on B. subtilis EDM was examined. Mutation of the swrA gene abolished EdmS-mediated EDM. It is known that swrA predominantly regulates expression of the fla/che operon in B. subtilis. We therefore performed EDM analysis using fla/che-deletion mutants and identified an EDM-mediated EDM cooperator in the flgB-fliL region. Further genetic investigation identified the flagellation factor FliF is a crucial EDM cooperator. To our knowledge, this is the first observation of the moonlighting function of FliF in DNA maintenance.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/fisiologia , Cromossomos Bacterianos , DNA Bacteriano/genética , Flagelos/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Bactérias/genética , Proteínas de Membrana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...