Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 3): 366-377, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831257

RESUMO

Presented here are the synthesis, characterization and study (using single crystal X-ray diffraction, Raman scattering, quantum mechanics calculations) of the structures of a series of biphenyls substituted in positions 3, 3', 4 and 4' with a variety of R (R = methyl, acetyl, hexyl) groups connected to the biphenyl core through oxygen atoms. The molecular conformation, particularly the torsion angle between aromatic rings has been extensively studied both in the solid as well as in the liquid state. The results show that the compounds appearing as rigorously planar in the solid present instead a twisted conformation in the melt. The solid versus melt issue strongly suggests that the reasons for planarity are to be found in the packing restraints. A `rule of thumb' is suggested for the design of biphenyls with different molecular conformations, based on the selection of the OR substituent.

2.
J Environ Manage ; 235: 1-8, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30669088

RESUMO

Iron-based nanoparticles were synthesized by a rapid method at room temperature using yerba mate (YM) extracts with FeCl3 in different proportions. Materials prepared from green tea (GT) extracts were also synthesized for comparison. These materials were thoroughly characterized by chemical analyses, XRD, magnetization, SEM-EDS, TEM-SAED, FTIR, UV-Vis, Raman, Mössbauer and XANES spectroscopies, and BET area analysis. It was concluded that the products are nonmagnetic iron complexes of the components of the extracts. The applicability of the materials for Cr(VI) (300 µM) removal from aqueous solutions at pH 3 using two Cr(VI):Fe molar ratios (MR), 1:3 and 1:0.5, has been tested. At Cr(VI):Fe MR = 1:3, the best YM materials gave complete Cr(VI) removal after two minutes of contact, similar to that obtained with commercial nanoscale zerovalent iron (N25), with dissolved Fe(II), and with a likewise prepared GT material. At a lower Cr(VI):Fe MR (1:0.5), although Cr(VI) removal was not complete after 20 min of reaction, the YM nanoparticles were more efficient than N25, GT nanoparticles and Fe(II) in solution. The results suggest that an optimal Cr(VI):Fe MR ratio could be reached when using the new YM nanoparticles, able to achieve a complete Cr(VI) reduction, and leaving very low Cr and Fe concentrations in the treated solutions. The rapid preparation of the nanoparticles would allow their use in removal of pollutants in soils and groundwater by direct injection of the mixture of precursors.


Assuntos
Ilex paraguariensis , Nanopartículas , Poluentes Químicos da Água , Cromo , Ferro , Extratos Vegetais
3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 71(Pt 6): 805-13, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26634738

RESUMO

Crystals of 4'-(isoquinolin-4-yl)-4,2':6',4''-terpyridine (iqtp), C24H16N4, grown from an ethanol solution, undergo a reversible first-order single-crystal to single-crystal phase transition at Tc in the range 273-275 K, from a disordered higher-temperature phase [form (I)] in the space group P21/c, with one single molecule in the asymmetric unit, to an ordered lower-temperature one [form (II)] in the space group P21/n, with two independent molecules in the asymmetric unit. There is a group-subgroup relationship linking (I)-(II), due to cell doubling and the disappearance of a number of symmetry operations. In addition to X-ray diffraction, the transition has been monitored by Raman spectroscopy and differential scanning calorimetry, the latter disclosing an enthalpy change of 0.72 (6) kJ mol(-1). Variations of the unit-cell parameters with temperature between 170 and 293 K are presented. The evolution of diffraction spots in the vicinity of the transition temperature shows the coexistence of both phases, confirming the first-order character of the transition. Structural details of both phases are analyzed and intermolecular interactions compared in order to investigate the mechanism of the phase transition. A three-dimensional Hirshfeld surface analysis was performed to corroborate the significant changes in the intermolecular features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...