Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(7): 073301, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922328

RESUMO

The calibration of an ion detection system was carried out for protons and carbon ions from a few tens of keV up to about 1 MeV energies. A Thomson spectrometer deflecting the particle beam accelerated from a laser plasma creates the ion spectra on a phosphor screen behind a micro-channel plate (MCP), which are recorded by a camera. During calibration, the ion spectra simultaneously hit the slotted CR-39 track detector installed in front of the MCP and, passing through the adjacent CR-39 stripes, the MCP. The calibration provides the ratio of the interpolated values between two consecutive stripes of the camera signal and the total number of particles recorded on the corresponding stripe of CR-39. The efficiency of proton detection by CR-39 was also measured in a conventional accelerator beam and found to drop by 20% below 100 keV.

2.
Soft Matter ; 17(44): 10005-10015, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34585709

RESUMO

Anisotropic crack patterns emerging in desiccating layers of pastes on a substrate can be exploited for controlled cracking with potential applications in microelectronic manufacturing. We investigate such possibilities of crack patterning in the framework of a discrete element model focusing on the temporal and spatial evolution of anisotropic crack patterns as a thin material layer gradually shrinks. In the model a homogeneous material is considered with an inherent structural disorder where anisotropy is captured by the directional dependence of the local cohesive strength. We demonstrate that there exists a threshold anisotropy below which crack initiation and propagation is determined by the disordered micro-structure, giving rise to cellular crack patterns. When the strength of anisotropy is sufficiently high, cracking is found to evolve through three distinct phases of aligned cracking which slices the sample, secondary cracking in the perpendicular direction, and finally binary fragmentation following the formation of a connected crack network. The anisotropic crack pattern results in fragments with a shape anisotropy which gradually gets reduced as binary fragmentation proceeds. The statistics of fragment masses exhibits a high degree of robustness described by a log-normal functional form at all anisotropies.

3.
Phys Rev E ; 96(3-1): 033006, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29347045

RESUMO

We investigate the effect of the amount of disorder on the shrinkage-induced cracking of a thin brittle layer attached to a substrate. Based on a discrete element model we study how the dynamics of cracking and the size of fragments evolve when the amount of disorder is varied. In the model a thin layer is discretized on a random lattice of Voronoi polygons attached to a substrate. Two sources of disorder are considered: structural disorder captured by the local variation of the stiffness and strength disorder represented by the random strength of cohesive elements between polygons. Increasing the amount of strength disorder, our calculations reveal a transition from a cellular crack pattern, generated by the sequential branching and merging of cracks, to a disordered ensemble of cracks where the merging of randomly nucleated microcracks dominate. In the limit of low disorder, the statistics of fragment size is described by a log-normal distribution; however, in the limit of high disorder, a power-law distribution is obtained.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 2): 016116, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22400634

RESUMO

Based on a fiber bundle model of subcritical fracture with localized load sharing, we show that the interplay of threshold disorder and the inhomogeneous stress field gives rise to a rich dynamics with intriguing aspects. In the model, fibers fail either due to immediate breaking or to a slow damage process. When the disorder is strong, a large amount of damage occurs, which is randomly diffused over the system; however, for weak disorder, a single growing crack is formed, which proceeds in a large number of localized bursts. The microstructure of cracks is characterized by a power-law size distribution, which is analogous to percolation in the regime of diffusive damage; however, it becomes significantly steeper when a single crack dominates. Simulations showed that the size distribution of breaking bursts and of the waiting times in between have a power-law functional form with a load-dependent cutoff. The burst size exponent proved to be independent of the damage process; however, it strongly depends on the external load with a minimum value of 1.75. The waiting time distribution is sensitive to the details of the damage process with an exponent decreasing from 2.0 to 1.4 as bursts get more and more localized to an advancing crack front.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 2): 027102, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19792283

RESUMO

We propose a generic model to describe the mechanical response and failure of systems which undergo a series of stick-slip events when subjected to an external load. We model the system as a bundle of fibers, where single fibers can gradually increase their relaxed length with a stick-slip mechanism activated by the increasing load. We determine the constitutive equation of the system and show by analytical calculations that on the macroscale a plastic response emerges followed by a hardening or softening regime. Releasing the load, an irreversible permanent deformation occurs which depends on the properties of sliding events. For quenched and annealed disorder of the failure thresholds the same qualitative behavior is found, however, in the annealed case the plastic regime is more pronounced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...