Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 17(1): 89, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094698

RESUMO

The adverse effect of ultraviolet (UV) radiation on human beings has sparked intense interest in the development of new sensors to effectively monitor UV and solar exposure. This paper describes a novel low-cost and flexible graphene oxide (GO)-based paper sensor capable of detecting the total amount of UV or sun energy delivered per unit area. GO is incorporated into the structure of standard printing paper, cellulose, via a low-cost fabrication technique. The effect of UV and solar radiation exposure on the GO paper-based sensor is investigated using a simple color change analysis. As a result, users can easily determine the amount of ultraviolet or solar energy received by the sensor using a simple color analysis application. A neural network (ANN) model is also explored to learn the relation between UV color intensity and exposure time, then digitally display the results. The accuracy for the developed ANN reached 96.83%. The disposable, cost-effective, simple, biodegradable, safe, and flexible characteristics of the paper-based UV sensor make it an attractive candidate for a variety of sensing applications. This work provides new vision toward developing highly efficient and fully disposable GO-based photosensors.

2.
Sci Rep ; 11(1): 19848, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615915

RESUMO

Content addressable memory (CAM) for search and match operations demands high speed and low power for near real-time decision-making across many critical domains. Resistive RAM (RRAM)-based in-memory computing has high potential in realizing an efficient static CAM for artificial intelligence tasks, especially on resource-constrained platforms. This paper presents an XNOR-based RRAM-CAM with a time-domain analog adder for efficient winning class computation. The CAM compares two operands, one voltage and the second one resistance, and outputs a voltage proportional to the similarity between the input query and the pre-stored patterns. Processing the summation of the output similarity voltages in the time-domain helps avoid voltage saturation, variation, and noise dominating the analog voltage-based computing. After that, to determine the winning class among the multiple classes, a digital realization is utilized to consider the class with the longest pulse width as the winning class. As a demonstrator, hyperdimensional computing for efficient MNIST classification is considered. The proposed design uses 65 nm CMOS foundry technology and realistic data for RRAM with total area of 0.0077 mm2, consumes 13.6 pJ of energy per 1 k query within 10 ns clock cycle. It shows a reduction of ~ 31 × in area and ~ 3 × in energy consumption compared to fully digital ASIC implementation using 65 nm foundry technology. The proposed design exhibits a remarkable reduction in area and energy compared to two of the state-of-the-art RRAM designs.

3.
Sci Rep ; 10(1): 9473, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528102

RESUMO

Artificial Intelligence (AI) at the edge has become a hot subject of the recent technology-minded publications. The challenges related to IoT nodes gave rise to research on efficient hardware-based accelerators. In this context, analog memristor devices are crucial elements to efficiently perform the multiply-and-add (MAD) operations found in many AI algorithms. This is due to the ability of memristor devices to perform in-memory-computing (IMC) in a way that mimics the synapses in human brain. Here, we present a novel planar analog memristor, namely NeuroMem, that includes a partially reduced Graphene Oxide (prGO) thin film. The analog and non-volatile resistance switching of NeuroMem enable tuning it to any value within the RON and ROFF range. These two features make NeuroMem a potential candidate for emerging IMC applications such as inference engine for AI systems. Moreover, the prGO thin film of the memristor is patterned on a flexible substrate of Cyclic Olefin Copolymer (COC) using standard microfabrication techniques. This provides new opportunities for simple, flexible, and cost-effective fabrication of solution-based Graphene-based memristors. In addition to providing detailed electrical characterization of the device, a crossbar of the technology has been fabricated to demonstrate its ability to implement IMC for MAD operations targeting fully connected layer of Artificial Neural Network. This work is the first to report on the great potential of this technology for AI inference application especially for edge devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...