Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 1(1)2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33157854

RESUMO

Several arboreal mammals have the ability to rapidly and repeatedly jump vertical distances of 2 m, starting from rest. We characterize this performance by a metric we call vertical jumping agility. Through basic kinetic relations, we show that this agility metric is fundamentally constrained by available actuator power. Although rapid high jumping is an important performance characteristic, the ability to control forces during stance also appears critical for sophisticated behaviors. The animal with the highest vertical jumping agility, the galago (Galago senegalensis), is known to use a power-modulating strategy to obtain higher peak power than that of muscle alone. Few previous robots have used series-elastic power modulation (achieved by combining series-elastic actuation with variable mechanical advantage), and because of motor power limits, the best current robot has a vertical jumping agility of only 55% of a galago. Through use of a specialized leg mechanism designed to enhance power modulation, we constructed a jumping robot that achieved 78% of the vertical jumping agility of a galago. Agile robots can explore venues of locomotion that were not previously attainable. We demonstrate this with a wall jump, where the robot leaps from the floor to a wall and then springs off the wall to reach a net height that is greater than that accessible by a single jump. Our results show that series-elastic power modulation is an actuation strategy that enables a clade of vertically agile robots.


Assuntos
Galago/fisiologia , Locomoção/fisiologia , Robótica/instrumentação , Animais , Fenômenos Biomecânicos , Elasticidade , Humanos , Perna (Membro)/fisiologia , Modelos Biológicos , Robótica/estatística & dados numéricos , Esportes
2.
Bioinspir Biomim ; 10(4): 046003, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26098002

RESUMO

Many animals, modern aircraft, and underwater vehicles use fusiform, streamlined body shapes that reduce fluid dynamic drag to achieve fast and effective locomotion in air and water. Similarly, numerous small terrestrial animals move through cluttered terrain where three-dimensional, multi-component obstacles like grass, shrubs, vines, and leaf litter also resist motion, but it is unknown whether their body shape plays a major role in traversal. Few ground vehicles or terrestrial robots have used body shape to more effectively traverse environments such as cluttered terrain. Here, we challenged forest-floor-dwelling discoid cockroaches (Blaberus discoidalis) possessing a thin, rounded body to traverse tall, narrowly spaced, vertical, grass-like compliant beams. Animals displayed high traversal performance (79 ± 12% probability and 3.4 ± 0.7 s time). Although we observed diverse obstacle traversal strategies, cockroaches primarily (48 ± 9% probability) used a novel roll maneuver, a form of natural parkour, allowing them to rapidly traverse obstacle gaps narrower than half their body width (2.0 ± 0.5 s traversal time). Reduction of body roundness by addition of artificial shells nearly inhibited roll maneuvers and decreased traversal performance. Inspired by this discovery, we added a thin, rounded exoskeletal shell to a legged robot with a nearly cuboidal body, common to many existing terrestrial robots. Without adding sensory feedback or changing the open-loop control, the rounded shell enabled the robot to traverse beam obstacles with gaps narrower than shell width via body roll. Such terradynamically 'streamlined' shapes can reduce terrain resistance and enhance traversability by assisting effective body reorientation via distributed mechanical feedback. Our findings highlight the need to consider body shape to improve robot mobility in real-world terrain often filled with clutter, and to develop better locomotor-ground contact models to understand interaction with 3D, multi-component terrain.


Assuntos
Biomimética/métodos , Tamanho Corporal/fisiologia , Locomoção/fisiologia , Modelos Biológicos , Robótica/métodos , Navegação Espacial/fisiologia , Animais , Biomimética/instrumentação , Simulação por Computador , Marcha/fisiologia , Robótica/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...