Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 65(7): 1004-1006, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38664014

RESUMO

Prostate-specific membrane antigen (PSMA) is frequently overexpressed in nonprostate malignancies. This preclinical study investigated the molecular basis of the application of PMSA-targeting radiopharmaceuticals in breast cancer subtypes. Methods: The somatic copy number status and the transcriptomic and protein expressions of FOLH1 (gene name of PSMA) were analyzed across breast cancer subtypes in 998 patients from The Cancer Genome Atlas dataset. Results: FOLH1 was frequently amplified in basallike breast cancer (BLBC) (32%) compared with luminal and human epidermal growth factor receptor 2-positive subtypes (16% and 17%, respectively; P < 0.01). FOLH1 expression was higher in BLBC (P < 0.001) and was negatively correlated with estrogen-receptor and progesterone-receptor expressions. Consistently, the PSMA protein level was higher in BLBC (P < 0.05). Interestingly, FOLH1 expression was associated with relapse-free and distant metastasis-free survival in patients with BLBC. Conclusion: The BLBC subtype exhibited frequent amplification and overexpression of PSMA, supporting the exploration of PSMA-targeting radiopharmaceuticals in this aggressive breast cancer subtype.


Assuntos
Antígenos de Superfície , Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Glutamato Carboxipeptidase II , Humanos , Glutamato Carboxipeptidase II/metabolismo , Glutamato Carboxipeptidase II/genética , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Antígenos de Superfície/metabolismo , Antígenos de Superfície/genética , Amplificação de Genes , Feminino , Genoma Humano
2.
Curr Top Med Chem ; 23(30): 2877-2972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164722

RESUMO

Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.


Assuntos
Neoplasias , Inibidores de Proteínas Quinases , Humanos , Receptores ErbB , Janus Quinases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo
3.
Int J Mycobacteriol ; 8(3): 229-236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31512598

RESUMO

Background: Leprosy is a neglected tropical disease affecting millions of people. The current treatment against leprosy includes various antibacterial drugs of which dapsone is known to bind to dihydropteroate synthase of Mycobacterium leprae. Dapsone is an expensive antibacterial drug with many side effects. A natural alternative for dapsone having less to no side effects and cheaper in production is needed. The three-dimensional protein structure of dihydropteroate synthase of M. leprae is not available. Methods: Protein homology modeling of target protein was carried out, and protein structure validation and energy minimization were performed. Phytochemicals mentioned in literature having anti-leprosy properties were studied for absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and that which passed ADMET filters were further carried for comparative in silico docking analysis along with dapsone. Preliminary docking analysis was carried using AutoDock Vina, and results obtained were validated using AutoDock 4.2.6 and SwissDock. Results: Neobavaisoflavone was predicted to be ten times safer for administration than dapsone. On performing in silico docking, it was found that neobavaisoflavone has better binding affinity than dapsone and forms a stable protein-ligand complex. Residues GLY.50, THR.88, and VAL.107 play an important role as binding site residues. Conclusion: Further, in vitro and in vivo experimental studies are required to confirm anti-leprosy properties of neobavaisoflavone over drug dapsone.


Assuntos
Dapsona/farmacologia , Di-Hidropteroato Sintase/antagonistas & inibidores , Isoflavonas/farmacologia , Hansenostáticos/farmacologia , Simulação de Acoplamento Molecular , Mycobacterium leprae/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Mycobacterium leprae/enzimologia , Compostos Fitoquímicos/farmacologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...