Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 120: 106641, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34808475

RESUMO

A primary mechanism of adhesive bond failure is a degradation of the adherent/adhesive interfacial stiffness from unwanted contamination or exposure to those environmental factors, which reduce adhesion quality. Substantial research has been conducted on the assessment of adhesively bonded structures and the detection of "kissing" bonds. Advanced ultrasonic assessment methods to interrogate bonded joints and measure interfacial stiffness using a distributed spring interface model have been developed. Amplitude-based ultrasonic methods have traditionally been used in adhesive bond quality assessment, but recent advancements in ultrasonic phase measurements allow for high measurement resolution with low-uncertainty. In this work, an ultrasonic phase technique for the monitoring of adhesively-bonded interfaces is demonstrated. Constant frequency measurements are obtained from the ultrasonic phase of the reflection coefficient from the adhesive bond with a glass adherent, where the degree of cure is controlled by exposure to ultraviolet light. A peak in the phase of the reflection coefficient, as predicted by the interfacial spring model, is measured experimentally. It is shown that the peak phase predicts the interfacial stiffness when some frequency dependent threshold value is crossed. With knowledge of the acoustic impedances of both materials at the interface, the interfacial stiffness is determined by an inverse algorithm involving measurements of ultrasonic phase shifts of bonded joint reflections. By monitoring the interface of bonded structures and coatings, this method permits a nondestructive inspection of bond strength from structural construction through its service life.

2.
J Acoust Soc Am ; 145(3): 1609, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31067958

RESUMO

As modern aerospace and automotive designs continually strive for higher performance, and thus rely on advanced composite structures where adhesive bonding is a preferred method of joining, the need for a robust quantitative nondestructive bond strength measurement method has increased. As such, advanced nondestructive evaluation methods have been researched for increased sensitivity to weak interfacial bonding and ultimately to detect "kissing" bonds. In this work, a phase-based method for interrogating bonded joints and detecting weak adhesion is developed by using swept-frequency phase measurements of ultrasonic waves reflected from an adhesive joint and modeling adhesive interfaces as a distributed spring system. The method's sensitivity to bond strength is explored by ultrasonic phase evaluation of tri-layer joints with bond quality varied by controlling ultraviolet light exposure and extracting interfacial stiffness constants of the bonds. Mechanical tensile tests found each joint failed adhesively, allowing a linear correlation to be drawn between interfacial stiffness and tensile strength, consistent with previous theoretical research. The ultrasonic phase measurement method identifies intermediate bond strengths, rather than simply detecting good or bad bonds. This technique has the potential for the verification of bond quality in lightweight aerospace and automotive designs utilizing advanced composite structures with adhesive attachments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...