Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6866, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891189

RESUMO

Mars lacks a global magnetic field, and instead possesses small-scale crustal magnetic fields, making its magnetic environment fundamentally different from intrinsic magnetospheres like those of Earth or Saturn. Here we report the discovery of magnetospheric ion drift patterns, typical of intrinsic magnetospheres, at Mars using measurements from Mars Atmosphere and Volatile EvolutioN mission. Specifically, we observe wedge-like dispersion structures of hydrogen ions exhibiting butterfly-shaped distributions (pitch angle peaks at 22.5°-45° and 135°-157.5°) within the Martian crustal fields, a feature previously observed only in planetary-scale intrinsic magnetospheres. These dispersed structures are the results of drift motions that fundamentally resemble those observed in intrinsic magnetospheres. Our findings indicate that the Martian magnetosphere embodies an intermediate case where both the unmagnetized and magnetized ion behaviors could be observed because of the wide range of strengths and spatial scales of the crustal magnetic fields around Mars.

2.
J Geophys Res Space Phys ; 127(7): e2022JA030374, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36248014

RESUMO

The scale size of the plasma boundary region between the sheath and ionosphere in the Martian system is often similar to the gyro-radii of sheath protons, ∼200 km. As a result, ion energization via kinetic structures may play an important role in modifying the ion trajectories and thus be important when evaluating the large-scale dynamics of the Martian system. In this paper, we report observations made with the MAVEN Langmuir Probe and Waves instrument of solitary bipolar electric field structures, and assess their potential role in ion energization in the Martian system. The observed structures appear as short duration (∼0.5 ms) bipolar electric field pulses of ∼1-25 mV/m, and are frequently observed in the upstream solar wind and inside the sheath. The study presented in this paper suggests that the bipolar electric field structures observed at Mars have an average electrostatic potential drop of ∼0.07 V. The estimated upper rate at which these structures could further energize the protons is estimated, assuming the protons gain the full 0.07 eV, to be ∼0.13 eV per gyration, or a change in proton energy of ∼0.3%, and a corresponding change in the gyroradius of ∼0.3 km. These numbers imply that to first order the bipolar structures are not a significant source of ion energization in the Martian magnetosheath.

3.
J Geophys Res Space Phys ; 127(1): e2021JA029942, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35865029

RESUMO

We present fast algorithms to automatically estimate the statistical position of the bow shock from spacecraft data, using existing analytical two-dimensional (2D) and three-dimensional (3D) models of the shock surface. We derive expressions of the standoff distances in 2D and 3D and of the normal to the bow shock at any given point on it. Two simple bow shock detection algorithms are constructed, one solely based on a geometrical predictor from existing models, the other using this predicted position to further refine it with the help of magnetometer data, an instrument flown on many planetary missions. Both empirical techniques are applicable to any planetary environment with a defined shock structure. Applied to the Martian environment and the NASA/MAVEN mission, the predicted shock position is on average within 0.15 planetary radius R p of the bow shock crossing. Using the predictor-corrector algorithm, this estimate is further refined to within a few minutes of the true crossing (≈0.05R p). Between 2014 and 2021, we detect 14,929 clear bow shock crossings, predominantly quasi-perpendicular. Thanks to 2D conic and 3D quadratic fits, we investigate the variability of the shock surface with respect to Mars Years (MY), solar longitude (Ls), and solar EUV flux levels. Although asymmetry in Y and Z Mars Solar Orbital coordinates is on average small, we show that for MY32 and MY35, Ls = [135°-225°] and high solar flux, it can become particularly noticeable, and is superimposed to the usual North-South asymmetry due in part to the presence of crustal magnetic fields.

4.
Geophys Res Lett ; 49(12): e2022GL098007, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35865912

RESUMO

The Martian magnetotail exhibits a highly twisted configuration, shifting in response to changes in polarity of the interplanetary magnetic field's (IMF) dawn-dusk (B Y) component. Here, we analyze ∼6000 MAVEN orbits to quantify the degree of magnetotail twisting (θ Twist) and assess variations as a function of (a) strong planetary crustal field location, (b) Mars season, and (c) downtail distance. The results demonstrate that θ Twist is larger for a duskward (+B Y) IMF orientation a majority of the time. This preference is likely due to the local orientation of crustal magnetic fields across the surface of Mars, where a +B Y IMF orientation presents ideal conditions for magnetic reconnection to occur. Additionally, we observe an increase in θ Twist with downtail distance, similar to Earth's magnetotail. These findings suggest that coupling between the IMF and moderate-to-weak crustal field regions may play a major role in determining the magnetospheric structure at Mars.

5.
Geophys Res Lett ; 49(12): e2022GL099114, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35860423

RESUMO

Solar wind protons can interact directly with the hydrogen corona of Mars through charge exchange, resulting in energetic neutral atoms (ENAs) able to penetrate deep into the upper atmosphere of Mars. ENAs can undergo multiple charge changing interactions, leading to an observable beam of penetrating protons in the upper atmosphere. We seek to characterize the behavior of these protons in the presence of magnetic fields using data collected by the Mars Atmosphere and Volatile EvolutioN spacecraft. We find that backscattered penetrating proton flux is enhanced in regions where the magnetic field strength is greater than 200 nT. We also find a strong correlation at CO2 column densities less than 5.5 × 1014 cm-2 between magnetic field strength and the observed backscattered and downward flux. We do not see significant changes in penetrating proton flux with magnetic field strengths on the order of 10 nT.

6.
J Geophys Res Space Phys ; 127(1): e2021JA029811, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35860696

RESUMO

We present an in-depth analysis of a time interval when quasi-linear mirror mode structures were detected by magnetic field and plasma measurements as observed by the NASA/Mars Atmosphere and Volatile EvolutioN spacecraft. We employ ion and electron spectrometers in tandem to support the magnetic field measurements and confirm that the signatures are indeed mirror modes. Wedged against the magnetic pile-up boundary, the low-frequency signatures last on average ∼ 10 s with corresponding sizes of the order of 15-30 upstream solar wind proton thermal gyroradii, or 10-20 proton gyroradii in the immediate wake of the quasi-perpendicular bow shock. Their peak-to-peak amplitudes are of the order of 30-35 nT with respect to the background field, and appear as a mixture of dips and peaks, suggesting that they may have been at different stages in their evolution. Situated in a marginally stable plasma with ß â€– âˆ¼ 1, we hypothesize that these so-called magnetic bottles, containing a relatively higher energy and denser ion population with respect to the background plasma, are formed upstream of the spacecraft behind the quasi-perpendicular shock. These signatures are very reminiscent of magnetic bottles found at other unmagnetized objects such as Venus and comets, also interpreted as mirror modes. Our case study constitutes the first unmistakable identification and characterization of mirror modes at Mars from the joint points of view of magnetic field, electron and ion measurements. Up until now, the lack of high-temporal resolution plasma measurements has prevented such an in-depth study.

7.
Space Sci Rev ; 217(5): 61, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720217

RESUMO

Volatiles and refractories represent the two end-members in the volatility range of species in any surface-bounded exosphere. Volatiles include elements that do not interact strongly with the surface, such as neon (detected on the Moon) and helium (detected both on the Moon and at Mercury), but also argon, a noble gas (detected on the Moon) that surprisingly adsorbs at the cold lunar nighttime surface. Refractories include species such as calcium, magnesium, iron, and aluminum, all of which have very strong bonds with the lunar surface and thus need energetic processes to be ejected into the exosphere. Here we focus on the properties of species that have been detected in the exospheres of inner Solar System bodies, specifically the Moon and Mercury, and how they provide important information to understand source and loss processes of these exospheres, as well as their dependence on variations in external drivers.

8.
Phys Rev Lett ; 125(2): 025102, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701332

RESUMO

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around -4. Based on our measurements, we demonstrate that either a significant (>50%) fraction of the total turbulent energy flux is dissipated in this range of scales, or the characteristic nonlinear interaction time of the turbulence decreases dramatically from the expectation based solely on the dispersive nature of nonlinearly interacting kinetic Alfvén waves.

9.
J Geophys Res Space Phys ; 125(7)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33415065

RESUMO

The refilling of the lunar wake is facilitated by the wake ambipolar electric potential arising from the electron pressure gradient. Incident solar wind protons can be reflected by the lunar crustal magnetic fields and the lunar surface on the dayside and repicked up, entering the lunar wake due to their large gyroradii. This burst of positive charges can cause the lunar wake potential to be reduced by hundreds of volts. We utilize over 7 years of ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) measurements to systematically investigate how the reflected protons affect the lunar wake potential structure when the Moon is immersed in the solar wind. RPs have a peak occurrence rate of ~20% for downstream distances from the Moon at N × 2πR g and a preference of high occurrence rates and high densities in the direction of the motional electric field of the solar wind. We show that reflected protons in the lunar wake can significantly change the electrostatic ambipolar potentials in the wake, leading in turn to the formation of field-aligned, accelerated electron beams. Our case study also suggests a nonmonotonic field-aligned potential structure in the presence of reflected protons in the wake. Lastly, our results show that when the reflected proton density is larger than ~30% of the local proton density from refilling solar wind protons, the wake potential scales as the logarithmic density of reflected protons, which can be explained by the Boltzmann relation.

10.
J Geophys Res Space Phys ; 124(5): 3360-3377, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-33479577

RESUMO

The refilling of the lunar wake is relatively well explained by the theory of 1-D plasma expansion into a vacuum; however, the field-aligned wake potential is not a directly measured quantity, and thus, a statistical analysis of wake potentials at high altitudes has not been previously performed. In this study, we obtain the wake potential by comparing the field-aligned electron distributions inside and outside of the lunar wake measured by the two probes of the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission. The derived potentials from ARTEMIS data vary with solar wind electron temperature and bulk flow velocity as the theory predicts. We also expand the 1-D plasma theory to 2-D in the plane of the interplanetary magnetic field and the solar wind velocity to examine how a tilted interplanetary magnetic field affects the wake potential structure. As the expansion time for the two sides of the wake differs, a wake potential asymmetry is developed in our model. This asymmetry is confirmed by the data-derived wake potentials. Moreover, ambipolar electric fields are obtained from both the modeled and data-derived wake potentials and show good agreement. Lastly, we examine the effects of the solar wind strahl-electron population on the wake potential structure, which appears to cause a net potential difference across the lunar shadow. This may imply that the disturbance of the wake plasma expansion extends farther outside the wake than previous plasma-expansion theories have predicted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...