Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(21): 4741-4750.e5, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37827153

RESUMO

The rate of primary productivity is a keystone variable in driving biogeochemical cycles today and has been throughout Earth's past.1 For example, it plays a critical role in determining nutrient stoichiometry in the oceans,2 the amount of global biomass,3 and the composition of Earth's atmosphere.4 Modern estimates suggest that terrestrial and marine realms contribute near-equal amounts to global gross primary productivity (GPP).5 However, this productivity balance has shifted significantly in both recent times6 and through deep time.7,8 Combining the marine and terrestrial components, modern GPP fixes ≈250 billion tonnes of carbon per year (Gt C year-1).5,9,10,11 A grand challenge in the study of the history of life on Earth has been to constrain the trajectory that connects present-day productivity to the origin of life. Here, we address this gap by piecing together estimates of primary productivity from the origin of life to the present day. We estimate that ∼1011-1012 Gt C has cumulatively been fixed through GPP (≈100 times greater than Earth's entire carbon stock). We further estimate that 1039-1040 cells have occupied the Earth to date, that more autotrophs than heterotrophs have ever existed, and that cyanobacteria likely account for a larger proportion than any other group in terms of the number of cells. We discuss implications for evolutionary trajectories and highlight the early Proterozoic, which encompasses the Great Oxidation Event (GOE), as the time where most uncertainty exists regarding the quantitative census presented here.


Assuntos
Atmosfera , Oxigênio , Oceanos e Mares , Atmosfera/química , Biomassa , Carbono
2.
Proc Natl Acad Sci U S A ; 120(32): e2300828120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523549

RESUMO

Traditionally, nuclear spin is not considered to affect biological processes. Recently, this has changed as isotopic fractionation that deviates from classical mass dependence was reported both in vitro and in vivo. In these cases, the isotopic effect correlates with the nuclear magnetic spin. Here, we show nuclear spin effects using stable oxygen isotopes (16O, 17O, and 18O) in two separate setups: an artificial dioxygen production system and biological aquaporin channels in cells. We observe that oxygen dynamics in chiral environments (in particular its transport) depend on nuclear spin, suggesting future applications for controlled isotope separation to be used, for instance, in NMR. To demonstrate the mechanism behind our findings, we formulate theoretical models based on a nuclear-spin-enhanced switch between electronic spin states. Accounting for the role of nuclear spin in biology can provide insights into the role of quantum effects in living systems and help inspire the development of future biotechnology solutions.


Assuntos
Fenômenos Biológicos , Oxigênio , Isótopos de Oxigênio/química , Oxigênio/química
3.
Geophys Res Lett ; 49(10): e2021GL095748, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35864818

RESUMO

The influence of atmospheric composition on the climates of present-day and early Earth has been studied extensively, but the role of ocean composition has received less attention. We use the ROCKE-3D ocean-atmosphere general circulation model to investigate the response of Earth's present-day and Archean climate system to low versus high ocean salinity. We find that saltier oceans yield warmer climates in large part due to changes in ocean dynamics. Increasing ocean salinity from 20 to 50 g/kg results in a 71% reduction in sea ice cover in our present-day Earth scenario. This same salinity change also halves the pCO2 threshold at which Snowball glaciation occurs in our Archean scenarios. In combination with higher levels of greenhouse gases such as CO2 and CH4, a saltier ocean may allow for a warm Archean Earth with only seasonal ice at the poles despite receiving ∼20% less energy from the Sun.

4.
Sci Adv ; 8(14): eabm5713, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385305

RESUMO

Microbial methane production (methanogenesis) is responsible for more than half of the annual emissions of this major greenhouse gas to the atmosphere. Although the stable isotopic composition of methane is often used to characterize its sources and sinks, strictly empirical descriptions of the isotopic signature of methanogenesis currently limit these attempts. We developed a metabolic-isotopic model of methanogenesis by carbon dioxide reduction, which predicts carbon and hydrogen isotopic fractionations, and clumped isotopologue distributions, as functions of the cell's environment. We mechanistically explain multiple isotopic patterns in laboratory and natural settings and show that these patterns constrain the in situ energetics of methanogenesis. Combining our model with data from environments in which methanogenic activity is energy-limited, we provide predictions for the biomass-specific methanogenesis rates and the associated isotopic effects.

5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101984

RESUMO

Earth's surface has undergone a protracted oxygenation, which is commonly assumed to have profoundly affected the biosphere. However, basic aspects of this history are still debated-foremost oxygen (O2) levels in the oceans and atmosphere during the billion years leading up to the rise of algae and animals. Here we use isotope ratios of iron (Fe) in ironstones-Fe-rich sedimentary rocks deposited in nearshore marine settings-as a proxy for O2 levels in shallow seawater. We show that partial oxidation of dissolved Fe(II) was characteristic of Proterozoic shallow marine environments, whereas younger ironstones formed via complete oxidation of Fe(II). Regardless of the Fe(II) source, partial Fe(II) oxidation requires low O2 in the shallow oceans, settings crucial to eukaryotic evolution. Low O2 in surface waters can be linked to markedly low atmospheric O2-likely requiring less than 1% of modern levels. Based on our records, these conditions persisted (at least periodically) until a shift toward higher surface O2 levels between ca 900 and 750 Ma, coincident with an apparent rise in eukaryotic ecosystem complexity. This supports the case that a first-order shift in surface O2 levels during this interval may have selected for life modes adapted to more oxygenated habitats.

6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34934013

RESUMO

Planktonic organic matter forms the base of the marine food web, and its nutrient content (C:N:Porg) governs material and energy fluxes in the ocean. Over Earth history, C:N:Porg had a crucial role in marine metazoan evolution and global biogeochemical dynamics, but the geologic history of C:N:Porg is unknown, and it is often regarded constant at the "Redfield" ratio of ∼106:16:1. We calculated C:N:Porg through Phanerozoic time by including nutrient- and temperature-dependent C:N:Porg parameterizations in a model of the long-timescale biogeochemical cycles. We infer a decrease from high Paleozoic C:Porg and N:Porg to present-day ratios, which stems from a decrease in the global average temperature and an increase in seawater phosphate availability. These changes in the phytoplankton's growth environment were driven by various Phanerozoic events: specifically, the middle to late Paleozoic expansion of land plants and the Triassic breakup of the supercontinent Pangaea, which increased continental weatherability and the fluxes of weathering-derived phosphate to the oceans. The resulting increase in the nutrient content of planktonic organic matter likely impacted the evolution of marine fauna and global biogeochemistry.


Assuntos
Carbono , Sedimentos Geológicos/química , Modelos Biológicos , Oceanos e Mares , Oxigênio , Fitoplâncton , Carbono/análise , Carbono/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Fitoplâncton/química , Fitoplâncton/crescimento & desenvolvimento
7.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34937697

RESUMO

Planktonic organic matter forms the base of the marine food web, and its nutrient content (C:N:Porg) governs material and energy fluxes in the ocean. Over Earth history, C:N:Porg had a crucial role in marine metazoan evolution and global biogeochemical dynamics, but the geologic history of C:N:Porg is unknown, and it is often regarded constant at the "Redfield" ratio of ∼106:16:1. We calculated C:N:Porg through Phanerozoic time by including nutrient- and temperature-dependent C:N:Porg parameterizations in a model of the long-timescale biogeochemical cycles. We infer a decrease from high Paleozoic C:Porg and N:Porg to present-day ratios, which stems from a decrease in the global average temperature and an increase in seawater phosphate availability. These changes in the phytoplankton's growth environment were driven by various Phanerozoic events: specifically, the middle to late Paleozoic expansion of land plants and the Triassic breakup of the supercontinent Pangaea, which increased continental weatherability and the fluxes of weathering-derived phosphate to the oceans. The resulting increase in the nutrient content of planktonic organic matter likely impacted the evolution of marine fauna and global biogeochemistry.


Assuntos
Carbono/análise , Sedimentos Geológicos/química , Nitrogênio/análise , Fósforo/análise , Fitoplâncton/química , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Fitoplâncton/crescimento & desenvolvimento
8.
Nat Commun ; 12(1): 4403, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285238

RESUMO

Sulfur cycling is ubiquitous in sedimentary environments, where it mediates organic carbon remineralization, impacting both local and global redox budgets, and leaving an imprint in pyrite sulfur isotope ratios (δ34Spyr). It is unclear to what extent stratigraphic δ34Spyr variations reflect local aspects of the depositional environment or microbial activity versus global sulfur-cycle variations. Here, we couple carbon-nitrogen-sulfur concentrations and stable isotopes to identify clear influences on δ34Spyr of local environmental changes along the Peru margin. Stratigraphically coherent glacial-interglacial δ34Spyr fluctuations (>30‰) were mediated by Oxygen Minimum Zone intensification/expansion and local enhancement of organic matter deposition. The higher resulting microbial sulfate reduction rates led to more effective drawdown and 34S-enrichment of residual porewater sulfate and sulfide produced from it, some of which is preserved in pyrite. We identify organic carbon loading as a major influence on δ34Spyr, adding to the growing body of evidence highlighting the local controls on these records.


Assuntos
Bactérias Anaeróbias/metabolismo , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Oxigênio/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Geografia , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Ferro/química , Oxirredução , Peru , Sulfetos/química , Isótopos de Enxofre/análise
9.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952515

RESUMO

The anaerobic oxidation of methane (AOM) is performed by methanotrophic archaea (ANME) in distinct sulfate-methane interfaces of marine sediments. In these interfaces, AOM often appears to deplete methane in the heavy isotopes toward isotopic compositions similar to methanogenesis. Here, we shed light on this effect and its physiological underpinnings using a thermophilic ANME-1-dominated culture. At high sulfate concentrations, residual methane is enriched in both 13C and 2H (13α = 1.016 and 2α = 1.155), as observed previously. In contrast, at low sulfate concentrations, the residual methane is substantially depleted in 13C (13α = 0.977) and, to a lesser extent, in 2H. Using a biochemical-isotopic model, we explain the sulfate dependence of the net isotopic fractionation through the thermodynamic drive of the involved intracellular reactions. Our findings relate these isotopic patterns to the physiology and environment of the ANME, thereby explaining a commonly observed isotopic enigma.

10.
Sci Adv ; 6(29): eaaw9371, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832612

RESUMO

A common assumption of a constant nitrogen-to-phosphorus ratio (N:P) of 16:1 in marine particulate organic matter (POM) appears to be invalidated by observations of major spatial variations in N:P. Two main explanations have been proposed. The first attributes the N:P variability to changes in the community composition of well-adapted phytoplankton. The second proposes that variability arises from physiological acclimation involving intracellular adjustments of nutrient allocation under nutrient deficiency. Using a model of phytoplankton physiology, observational datasets, and a review of laboratory culture results, we assess the mechanistic basis of N:P variability. We find that the taxonomic composition of well-adapted phytoplankton best explains observed variations in POM N:P. Furthermore, we show that acclimation to nutrient deficiency may be safely neglected when considering the effects of ecology on POM N:P. These findings provide insight into the controls on global variability in POM composition and average phytoplankton physiological performance in the oceans.

11.
Science ; 365(6452): 469-473, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31371609

RESUMO

The oxygen isotope composition (δ18O) of marine sedimentary rocks has increased by 10 to 15 per mil since Archean time. Interpretation of this trend is hindered by the dual control of temperature and fluid δ18O on the rocks' isotopic composition. A new δ18O record in marine iron oxides covering the past ~2000 million years shows a similar secular rise. Iron oxide precipitation experiments reveal a weakly temperature-dependent iron oxide-water oxygen isotope fractionation, suggesting that increasing seawater δ18O over time was the primary cause of the long-term rise in δ18O values of marine precipitates. The 18O enrichment may have been driven by an increase in terrestrial sediment cover, a change in the proportion of high- and low-temperature crustal alteration, or a combination of these and other factors.

12.
Geobiology ; 16(4): 353-368, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29885273

RESUMO

As a consequence of Earth's surface oxygenation, ocean geochemistry changed from ferruginous (iron(II)-rich) into more complex ferro-euxinic (iron(II)-sulphide-rich) conditions during the Paleoproterozoic. This transition must have had profound implications for the Proterozoic microbial community that existed within the ocean water and bottom sediment; in particular, iron-oxidizing bacteria likely had to compete with emerging sulphur-metabolizers. However, the nature of their coexistence and interaction remains speculative. Here, we present geochemical and microbiological data from the Arvadi Spring in the eastern Swiss Alps, a modern model habitat for ferro-euxinic transition zones in late Archean and Proterozoic oceans during high-oxygen intervals, which enables us to reconstruct the microbial community structure in respective settings for this geological era. The spring water is oxygen-saturated but still contains relatively elevated concentrations of dissolved iron(II) (17.2 ± 2.8 µM) and sulphide (2.5 ± 0.2 µM) with simultaneously high concentrations of sulphate (8.3 ± 0.04 mM). Solids consisting of quartz, calcite, dolomite and iron(III) oxyhydroxide minerals as well as sulphur-containing particles, presumably elemental S0 , cover the spring sediment. Cultivation-based most probable number counts revealed microaerophilic iron(II)-oxidizers and sulphide-oxidizers to represent the largest fraction of iron- and sulphur-metabolizers in the spring, coexisting with less abundant iron(III)-reducers, sulphate-reducers and phototrophic and nitrate-reducing iron(II)-oxidizers. 16S rRNA gene 454 pyrosequencing showed sulphide-oxidizing Thiothrix species to be the dominating genus, supporting the results from our cultivation-based assessment. Collectively, our results suggest that anaerobic and microaerophilic iron- and sulphur-metabolizers could have coexisted in oxygenated ferro-sulphidic transition zones of late Archean and Proterozoic oceans, where they would have sustained continuous cycling of iron and sulphur compounds.


Assuntos
Biota , Ecossistema , Ferro/metabolismo , Nascentes Naturais/microbiologia , Enxofre/metabolismo , Aerobiose , Anaerobiose , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Nascentes Naturais/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suíça
13.
Environ Sci Technol ; 52(7): 4013-4022, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505248

RESUMO

Sulfur (S) isotope fractionation by sulfate-reducing microorganisms is a direct manifestation of their respiratory metabolism. This fractionation is apparent in the substrate (sulfate) and waste (sulfide) produced. The sulfate-reducing metabolism responds to variability in the local environment, with the response determined by the underlying genotype, resulting in the expression of an "isotope phenotype". Sulfur isotope phenotypes have been used as a diagnostic tool for the metabolic activity of sulfate-reducing microorganisms in the environment. Our experiments with Desulfovibrio vulgaris Hildenborough (DvH) grown in batch culture suggest that the S isotope phenotype of sulfate respiring microbes may lag environmental changes on time scales that are longer than generational. When inocula from different phases of growth are assayed under the same environmental conditions, we observed that DvH exhibited different net apparent fractionations of up to -9‰. The magnitude of fractionation was weakly correlated with physiological parameters but was strongly correlated to the age of the initial inoculum. The S isotope fractionation observed between sulfate and sulfide showed a positive correlation with respiration rate, contradicting the well-described negative dependence of fractionation on respiration rate. Quantitative modeling of S isotope fractionation shows that either a large increase (≈50×) in the abundance of sulfate adenylyl transferase (Sat) or a smaller increase in sulfate transport proteins (≈2×) is sufficient to account for the change in fractionation associated with past physiology. Temporal transcriptomic studies with DvH imply that expression of sulfate permeases doubles over the transition from early exponential to early stationary phase, lending support to the transport hypothesis proposed here. As it is apparently maintained for multiple generations (≈1-6) of subsequent growth in the assay environment, we suggest that this fractionation effect acts as a sort of isotopic "memory" of a previous physiological and environmental state. Whatever its root cause, this physiological hysteresis effect can explain variations in fractionations observed in many environments. It may also enable new insights into life at energetic limits, especially if its historical footprint extends deeper than generational.


Assuntos
Desulfovibrio vulgaris , Sulfatos , Sulfetos , Isótopos de Enxofre , Óxidos de Enxofre
14.
Front Microbiol ; 9: 3110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619187

RESUMO

The sulfur isotope record provides key insight into the history of Earth's redox conditions. A detailed understanding of the metabolisms driving this cycle, and specifically microbial sulfate reduction (MSR), is crucial for accurate paleoenvironmental reconstructions. This includes a precise knowledge of the step-specific sulfur isotope effects during MSR. In this study, we aim at resolving the cellular-level fractionation factor during dissimilatory sulfite reduction to sulfide within MSR, and use this measured isotope effect as a calibration to enhance our understanding of the biochemistry of sulfite reduction. For this, we merge measured isotope effects associated with dissimilatory sulfite reduction with a quantitative model that explicitly links net fractionation, reaction reversibility, and intracellular metabolite levels. The highly targeted experimental aspect of this study was possible by virtue of the availability of a deletion mutant strain of the model sulfate reducer Desulfovibrio vulgaris (strain Hildenborough), in which the sulfite reduction step is isolated from the rest of the metabolic pathway owing to the absence of its QmoABC complex (ΔQmo). This deletion disrupts electron flux and prevents the reduction of adenosine phosphosulfate (APS) to sulfite. When grown in open-system steady-state conditions at 10% maximum growth rate in the presence of sulfite and lactate as electron donor, sulfur isotope fractionation factors averaged -15.9‰ (1 σ = 0.4), which appeared to be statistically indistinguishable from a pure enzyme study with dissimilatory sulfite reductase. We coupled these measurements with an understanding of step-specific equilibrium and kinetic isotope effects, and furthered our mechanistic understanding of the biochemistry of sulfite uptake and ensuing reduction. Our metabolically informed isotope model identifies flavodoxin as the most likely electron carrier performing the transfer of electrons to dissimilatory sulfite reductase. This is in line with previous work on metabolic strategies adopted by sulfate reducers under different energy regimes, and has implications for our understanding of the plasticity of this metabolic pathway at the center of our interpretation of modern and palaeo-environmental records.

15.
Environ Sci Technol ; 52(3): 1234-1243, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29283564

RESUMO

Rates of thiocyanate degradation were measured in waters and sediments of marine and limnic systems under various redox conditions, oxic, anoxic (nonsulfidic, nonferruginous, nonmanganous), ferruginous, sulfidic, and manganous, for up to 200-day period at micromolar concentrations of thiocyanate. The decomposition rates in natural aquatic systems were found to be controlled by microbial processes under both oxic and anoxic conditions. The Michaelis-Menten model was applied for description of the decomposition kinetics. The decomposition rate in the sediments was found to be higher than in the water samples. Under oxic conditions, thiocyanate degradation was faster than under anaerobic conditions. In the presence of hydrogen sulfide, the decomposition rate increased compared to anoxic nonsulfidic conditions, whereas in the presence of iron(II) or manganese(II), the rate decreased. Depending on environmental conditions, half-lives of thiocyanate in sediments and water columns were in the ranges of hours to few dozens of days, and from days to years, respectively. Application of kinetic parameters presented in this research allows estimation of rates of thiocyanate cycling and its concentrations in the Archean ocean.


Assuntos
Sedimentos Geológicos , Tiocianatos , Ferro , Cinética , Oxirredução
16.
ISME J ; 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29087380

RESUMO

Dissimilatory sulfate reduction (DSR) has been a key process influencing the global carbon cycle, atmospheric composition and climate for much of Earth's history, yet the energy metabolism of sulfate-reducing microbes remains poorly understood. Many organisms, particularly sulfate reducers, live in low-energy environments and metabolize at very low rates, requiring specific physiological adaptations. We identify one such potential adaptation-the electron carriers selected for survival under energy-limited conditions. Employing a quantitative biochemical-isotopic model, we find that the large S isotope fractionations (>55‰) observed in a wide range of natural environments and culture experiments at low respiration rates are only possible when the standard-state Gibbs free energy (ΔG'°) of all steps during DSR is more positive than -10 kJ mol-1. This implies that at low respiration rates, only electron carriers with modestly negative reduction potentials are involved, such as menaquinone, rubredoxin, rubrerythrin or some flavodoxins. Furthermore, the constraints from S isotope fractionation imply that ferredoxins with a strongly negative reduction potential cannot be the direct electron donor to S intermediates at low respiration rates. Although most sulfate reducers have the genetic potential to express a variety of electron carriers, our results suggest that a key physiological adaptation of sulfate reducers to low-energy environments is to use electron carriers with modestly negative reduction potentials.The ISME Journal advance online publication, 31 October 2017; doi:10.1038/ismej.2017.185.

17.
Proc Natl Acad Sci U S A ; 111(51): 18116-25, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25362045

RESUMO

We present a quantitative model for sulfur isotope fractionation accompanying bacterial and archaeal dissimilatory sulfate respiration. By incorporating independently available biochemical data, the model can reproduce a large number of recent experimental fractionation measurements with only three free parameters: (i) the sulfur isotope selectivity of sulfate uptake into the cytoplasm, (ii) the ratio of reduced to oxidized electron carriers supporting the respiration pathway, and (iii) the ratio of in vitro to in vivo levels of respiratory enzyme activity. Fractionation is influenced by all steps in the dissimilatory pathway, which means that environmental sulfate and sulfide levels control sulfur isotope fractionation through the proximate influence of intracellular metabolites. Although sulfur isotope fractionation is a phenotypic trait that appears to be strain specific, we show that it converges on near-thermodynamic behavior, even at micromolar sulfate levels, as long as intracellular sulfate reduction rates are low enough (<<1 fmol H2S⋅cell(-1)⋅d(-1)).


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Isótopos de Enxofre/metabolismo , Citoplasma/metabolismo , Modelos Biológicos , Isótopos de Enxofre/classificação
18.
Geochem Trans ; 15(1): 10, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25221435

RESUMO

BACKGROUND: Pyrite is one of the most abundant and widespread of the sulfide minerals with a central role in biogeochemical cycles of iron and sulfur. Due to its diverse roles in the natural and anthropogenic sulfur cycle, pyrite has been extensively studied in various experimental investigations of the kinetics of its dissolution and oxidation, the isotopic fractionations associated with these reactions, the microbiological processes involved, and the effects of pyrite on human health. Elemental sulfur (S0) is a common product of incomplete pyrite oxidation. Preexisting S0 impurities as unaccounted reaction products are a source of experimental uncertainty, as are adhered fine grains of pyrite and its oxidation products. Removal of these impurities is, therefore, desirable. A robust standardized pretreatment protocol for removal of fine particles and oxidation impurities from pyrite is lacking. Here we describe a protocol for S0 and fine particle removal from the surface of pyrite by rinsing in acid followed by repeated ultrasonication with warm acetone. RESULTS: Our data demonstrate the presence of large fractions of S0 on untreated pyrite particle surfaces, of which only up to 60% was removed by a commonly used pretreatment method described by Moses et al. (GCA 51:1561-1571, 1987). In comparison, after pretreatment by the protocol proposed here, approximately 98% S0 removal efficiency was achieved. Additionally, the new procedure was more efficient at removal of fine particles of adhered pyrite and its oxidation products and did not appear to affect the particle size distribution, the specific surface area, or the properties of grain surfaces. CONCLUSIONS: The suggested pyrite pretreatment protocol is more efficient in removal of impurities from pyrite grains, and provides multiple advantages for both kinetic and isotopic investigations of pyrite transformations under various environmental conditions.

19.
Proc Natl Acad Sci U S A ; 110(28): 11244-9, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23733944

RESUMO

Phanerozoic levels of atmospheric oxygen relate to the burial histories of organic carbon and pyrite sulfur. The sulfur cycle remains poorly constrained, however, leading to concomitant uncertainties in O2 budgets. Here we present experiments linking the magnitude of fractionations of the multiple sulfur isotopes to the rate of microbial sulfate reduction. The data demonstrate that such fractionations are controlled by the availability of electron donor (organic matter), rather than by the concentration of electron acceptor (sulfate), an environmental constraint that varies among sedimentary burial environments. By coupling these results with a sediment biogeochemical model of pyrite burial, we find a strong relationship between observed sulfur isotope fractionations over the last 200 Ma and the areal extent of shallow seafloor environments. We interpret this as a global dependency of the rate of microbial sulfate reduction on the availability of organic-rich sea-floor settings. However, fractionation during the early/mid-Paleozoic fails to correlate with shelf area. We suggest that this decoupling reflects a shallower paleoredox boundary, primarily confined to the water column in the early Phanerozoic. The transition between these two states begins during the Carboniferous and concludes approximately around the Triassic-Jurassic boundary, indicating a prolonged response to a Carboniferous rise in O2. Together, these results lay the foundation for decoupling changes in sulfate reduction rates from the global average record of pyrite burial, highlighting how the local nature of sedimentary processes affects global records. This distinction greatly refines our understanding of the S cycle and its relationship to the history of atmospheric oxygen.

20.
Proc Natl Acad Sci U S A ; 110(44): 17644-9, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23572589

RESUMO

Mass-independent fractionation of sulfur isotopes (S MIF) in Archean and Paleoproterozoic rocks provides strong evidence for an anoxic atmosphere before ~2,400 Ma. However, the origin of this isotopic anomaly remains unclear, as does the identity of the molecules that carried it from the atmosphere to Earth's surface. Irrespective of the origin of S MIF, processes in the biogeochemical sulfur cycle modify the primary signal and strongly influence the S MIF preserved and observed in the geological record. Here, a detailed model of the marine sulfur cycle is used to propagate and distribute atmospherically derived S MIF from its delivery to the ocean to its preservation in the sediment. Bulk pyrite in most sediments carries weak S MIF because of microbial reduction of most sulfur compounds to form isotopically homogeneous sulfide. Locally, differential incorporation of sulfur compounds into pyrite leads to preservation of S MIF, which is predicted to be most highly variable in nonmarine and shallow-water settings. The Archean ocean is efficient in diluting primary atmospheric S MIF in the marine pools of sulfate and elemental sulfur with inputs from SO2 and H2S, respectively. Preservation of S MIF with the observed range of magnitudes requires the S MIF production mechanism to be moderately fractionating ( 20-40‰). Constraints from the marine sulfur cycle allow that either elemental sulfur or organosulfur compounds (or both) carried S MIF to the surface, with opposite sign to S MIF in SO2 and H2SO4. Optimal progress requires observations from nonmarine and shallow-water environments and experimental constraints on the reaction of photoexcited SO2 with atmospheric hydrocarbons.


Assuntos
Archaea/química , Sedimentos Geológicos/análise , Modelos Químicos , Isótopos de Enxofre/química , Anaerobiose , Sedimentos Geológicos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...