Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 17(12): 1381-1387, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27749840

RESUMO

Group 2 innate lymphoid cells (ILC2s) and CD4+ type 2 helper T cells (TH2 cells) are defined by their similar effector cytokines, which together mediate the features of allergic immunity. We found that tissue ILC2s and TH2 cells differentiated independently but shared overlapping effector function programs that were mediated by exposure to the tissue-derived cytokines interleukin 25 (IL-25), IL-33 and thymic stromal lymphopoietin (TSLP). Loss of these three tissue signals did not affect lymph node priming, but abrogated the terminal differentiation of effector TH2 cells and adaptive lung inflammation in a T cell-intrinsic manner. Our findings suggest a mechanism by which diverse perturbations can activate type 2 immunity and reveal a shared local-tissue-elicited checkpoint that can be exploited to control both innate and adaptive allergic inflammation.


Assuntos
Citocinas/metabolismo , Hipersensibilidade/imunologia , Imunidade Inata , Interleucina-17/metabolismo , Interleucina-33/metabolismo , Linfócitos/imunologia , Células Th2/imunologia , Imunidade Adaptativa , Alérgenos/imunologia , Animais , Aspergillus niger , Venenos de Abelha/imunologia , Abelhas , Diferenciação Celular , Células Cultivadas , Citocinas/genética , Dermatophagoides farinae , Interleucina-17/genética , Interleucina-33/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfopoietina do Estroma do Timo
2.
Proc Natl Acad Sci U S A ; 112(33): 10437-42, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26216948

RESUMO

T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently "knock out" genes and "knock in" targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4(+) T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ∼40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ∼20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.


Assuntos
Proteínas de Bactérias/genética , Endonucleases/genética , Ribonucleoproteínas/genética , Linfócitos T/citologia , Proteínas de Bactérias/química , Linfócitos T CD4-Positivos/citologia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Eletroporação , Endonucleases/química , Técnicas de Introdução de Genes , Engenharia Genética/métodos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucócitos Mononucleares/citologia , Receptores CXCR4/metabolismo , Ribonucleoproteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...