Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 846: 146850, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044942

RESUMO

Aurantiochytrium sp., a fungoid marine protist that belongs to Stramenophila has proven its potential in the production of polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acids (DHA). In this study, genomic characterisation of a potential producer for commercial production of DHA, Aurantiochytrium sp. SW1 has been carried out via whole genome sequencing analysis. The genome size of this strain is 60.89 Mb, with a total of 11,588 protein-coding genes. Among these, 9,127 genes could be functionally annotated into a total of 7,248 (62.5 %) from UniProt, 6,554 (56.6 %) from KEGG and 8,643 (74.6 %) genes from eggNOG protein database. The highest proportion of genes belongs to the protein family of metabolism were further assigned into 11 metabolic categories. The highest number of genes belonging to lipid metabolism (321 genes) followed by carbohydrate metabolism (290 genes), metabolism of cofactors and vitamins (197 genes) and amino acid metabolism (188 genes). Further analysis into the biosynthetic pathway for DHA showed evidence of all genes involved in PKS (polyketide synthase)-like PUFA synthase pathway and incomplete fatty acid synthase-elongase/desaturase pathway. Analysis of PUFA synthase showed the presence of up to ten tandem acyl carrier protein (ACP) domains which might have contributed to high DHA production in this organism. In addition, a hybrid system incorporating elements of FAS, Type I PKS and Type II PKS systems were found to be involved in the biosynthetic pathways of fatty acids in Aurantiochytrium sp. SW1. This study delivers an important reference for future research to enhance the lipid, especially DHA production in Aurantiochytrium sp, SW1 and establishment of this strain as an oleaginous thraustochytrid model.


Assuntos
Ácidos Docosa-Hexaenoicos , Estramenópilas , Proteína de Transporte de Acila/metabolismo , Aminoácidos/metabolismo , Vias Biossintéticas/genética , Ácidos Docosa-Hexaenoicos/genética , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos , Ácido Graxo Sintases/genética , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Policetídeo Sintases/genética , Estramenópilas/genética , Vitaminas
2.
Front Nutr ; 9: 876649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558745

RESUMO

Thraustochytrids, such as Aurantiochytrium and Schizochytrium, have been shown as a promising sustainable alternative to fish oil due to its ability to accumulate a high level of docosahexaenoic acid (DHA) from its total fatty acids. However, the low DHA volumetric yield by most of the wild type (WT) strain of thraustochytrids which probably be caused by the low oxidative stress tolerance as well as a limited supply of key precursors for DHA biosynthesis has restricted its application for industrial application. Thus, to enhance the DHA production, we aimed to generate Aurantiochytrium SW1 mutant with high tolerance toward oxidative stress and high glucose-6 phosphate dehydrogenase (G6PDH) activities through strategic plasma mutagenesis coupled with chemical screening. The WT strain (Aurantiochytrium sp. SW1) was initially exposed to plasma radiation and was further challenged with zeocin and polydatin, generating a mutant (YHPM1) with a 30, 65, and 80% higher overall biomass, lipid, and DHA production in comparison with the parental strains, respectively. Further analysis showed that the superior growth, lipid, and DHA biosynthesis of the YHMP1 were attributed not only to the higher G6PDH and enzymes involved in the oxidative defense such as superoxide dismutase (SOD) and catalase (CAT) but also to other key metabolic enzymes involved in lipid biosynthesis. This study provides an effective approach in developing the Aurantiochytrium sp. mutant with superior DHA production capacity that has the potential for industrial applications.

3.
Biomolecules ; 10(5)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413958

RESUMO

In the present study, the impact of eight phytohormones from six different classes on the growth, lipid and docosahexaenoic acid (DHA) biosynthetic capacity of Aurantiochytrium sp. SW1 (SW1) was evaluated. Kinetin (KIN), jasmonic acid (JA) and gibberellic acid (GA) significantly enhanced the growth and DHA production of SW1 by 16%-28% and 66%-84% in comparison to the control, respectively. The synergistic effect of these three phytohormones, evaluated by the response surface methodology (RSM), showed that a combination of 3.6 mg/L GA, 2.0 mg/L KIN and 20.0 mg/L JA further increased the growth and DHA production of SW1 by 16% to 28% and 22% to 36%, respectively, in comparison to the individual supplementation. The synergistic effect of these phytohormones was also shown to be time-dependent, where feeding at 24 h of cultivation led to 15%, 26% and 35% further increments in the biomass, lipid and DHA production in comparison to that of 0 h, respectively. The determination of stress markers, antioxidant enzymes and key enzymes involved in fatty acid biosynthesis aided to elucidate the potential mechanism underlying the improvement of growth and DHA production by SW1 at various times of feeding. Supplementation with the phytohormones at 24 h exhibited the maximum impact on reducing the level of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as augmented the antioxidants (superoxide dismutase and catalase) and key metabolic enzymes involved in lipogenesis (malic, glucose-6-phosphate dehydrogenase and ATP-citrate lyase) in comparison to the control and other time points. This study signifies the potential application of phytohormones for improving the growth, lipid and DHA production in Aurantiochytrium spp.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Microalgas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Ciclopentanos/farmacologia , Sinergismo Farmacológico , Giberelinas/farmacologia , Microbiologia Industrial/métodos , Cinetina/farmacologia , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Oxilipinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
4.
Biomed Res Int ; 2020: 8890269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33457420

RESUMO

Carotenoids produced by microbial sources are of industrial and medicinal importance due to their antioxidant and anticancer properties. In the current study, optimization of ß-carotene production in M. circinelloides strain 277.49 was achieved using response surface methodology (RSM). Cerulenin and ketoconazole were used to inhibit fatty acids and the sterol biosynthesis pathway, respectively, in order to enhance ß-carotene production by diverting metabolic pool towards the mevalonate pathway. All three variables used in screening experiments were found to be significant for the production of ß-carotene. The synergistic effect of the C/N ratio, cerulenin, and ketoconazole was further evaluated and optimized for superior ß-carotene production using central composite design of RSM. Our results found that the synergistic combination of C/N ratios, cerulenin, and ketoconazole at different concentrations affected the ß-carotene productions significantly. The optimal production medium (std. order 11) composed of C/N 25, 10 µg/mL cerulenin, and 150 mg/L ketoconazole, producing maximum ß-carotene of 4.26 mg/L (0.43 mg/g) which was 157% greater in comparison to unoptimized medium (1.68 mg/L, 0.17 mg/g). So, it was concluded that metabolic flux had been successfully redirected towards the mevalonate pathway for enhanced ß-carotene production in CBS 277.49.


Assuntos
Carotenoides/metabolismo , Ácido Mevalônico/metabolismo , Mucor , beta Caroteno/biossíntese , Antifúngicos/química , Fenômenos Bioquímicos , Carbono/química , Cerulenina/química , Meios de Cultura/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/química , Fermentação , Microbiologia Industrial , Cetoconazol/química , Lipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...