Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(30): eadd8766, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37506208

RESUMO

Soluble human lectins are critical components of innate immunity. Genetic models suggest that lectins influence host-resident microbiota, but their specificity for commensal and mutualist species is understudied. Elucidating lectins' roles in regulating microbiota requires an understanding of which microbial species they bind within native communities. To profile human lectin recognition, we developed Lectin-Seq. We apply Lectin-Seq to human fecal microbiota using the soluble mannose-binding lectin (MBL) and intelectin-1 (hItln1). Although each lectin binds a substantial percentage of the samples (10 to 20%), the microbial interactomes of MBL and hItln1 differ markedly in composition and diversity. MBL binding is highly selective for a small subset of species commonly associated with humans. In contrast, hItln1's interaction profile encompasses a broad range of lower-abundance species. Our data uncover stark differences in the commensal recognition properties of human lectins.


Assuntos
Imunidade Inata , Lectinas , Humanos , Lectinas/genética
2.
ACS Cent Sci ; 9(5): 947-956, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37252360

RESUMO

Enveloped viruses co-opt host glycosylation pathways to decorate their surface proteins. As viruses evolve, emerging strains can modify their glycosylation patterns to influence host interactions and subvert immune recognition. Still, changes in viral glycosylation or their impact on antibody protection cannot be predicted from genomic sequences alone. Using the highly glycosylated SARS-CoV-2 Spike protein as a model system, we present a lectin fingerprinting method that rapidly reports on changes in variant glycosylation state, which are linked to antibody neutralization. In the presence of antibodies or convalescent and vaccinated patient sera, unique lectin fingerprints emerge that distinguish neutralizing versus non-neutralizing antibodies. This information could not be inferred from direct binding interactions between antibodies and the Spike receptor-binding domain (RBD) binding data alone. Comparative glycoproteomics of the Spike RBD of wild-type (Wuhan-Hu-1) and Delta (B.1.617.2) variants reveal O-glycosylation differences as a key determinant of immune recognition differences. These data underscore the interplay between viral glycosylation and immune recognition and reveal lectin fingerprinting to be a rapid, sensitive, and high-throughput assay to distinguish the neutralization potential of antibodies that target critical viral glycoproteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...