Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gait Posture ; 110: 17-22, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461566

RESUMO

BACKGROUND: Post-ACLR individuals can experience repeated exposure to variable limb loading, which contributes to development of knee osteoarthritis. Variable limb loading can present as loading rate variability (LRV) and is magnified during tasks like fast walking when the system is stressed. Nonlinear measures that evaluate temporal variability have successfully detected changes in gait variability associated with altered motor control, however, appropriately describing and uncovering the nature of gait variability has been challenging. Here, Poincaré analysis, a nonlinear method unique in its ability to capture different aspects of variability, served to uncover and quantify changes in limb LRV. It was hypothesized that post-ACLR individuals' overloaded limbs would quantitatively and graphically demonstrate greater short-term stride-to-stride and long-term limb LRV during fast walking compared to the underloaded and healthy control limbs. METHODS: Fourteen post-ACLR individuals and fourteen healthy controls completed a walking protocol on an instrumented treadmill where they walked at 1.0 m/s and 1.5 m/s for 5-minutes each. A Welch's test was performed to compare differences in short-term and long-term LRV metrics for the post-ACLR individuals' overloaded and underloaded limbs and the healthy controls' right limbs. RESULTS: Analyses revealed that the post-ACLR individuals' overloaded limb exhibited significantly greater short-term and long-term values compared to the underloaded and healthy control limbs at 1.5 m/s (p<0.05). Additionally, the loading rate data was widely scattered across the plots for the overloaded limb, indicating greater LRV. SIGNIFICANCE: Poincaré analysis successfully identified that post-ACLR overloaded limbs exhibited impaired motor control during fast walking based on quantitative and graphical changes in variability. This highlights the clinical applications of Poincaré analysis, with the plots potentially serving as an easy-to-interpret diagnostic tool for pathological limb LRV.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Suporte de Carga , Humanos , Masculino , Feminino , Adulto , Suporte de Carga/fisiologia , Fenômenos Biomecânicos , Adulto Jovem , Marcha/fisiologia , Estudos de Casos e Controles , Caminhada/fisiologia , Análise da Marcha , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Osteoartrite do Joelho/fisiopatologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38082994

RESUMO

In post-ACLR individuals, gait variability often represents the presence of altered motor control. Quantifying variable limb loading is challenging, yet nonlinear analyses have been successful in detecting changes in gait variability due to altered motor control. Here, nonlinear metrics were derived and used to train multiple machine learning models to classify between healthy controls and post-ACLR individuals. The metrics were extracted from individuals' vertical ground reaction force data during a fast-walking trial as variable limb loading is exacerbated when the system is stressed and being challenged. It was hypothesized that effective differentiation between healthy control and post-ACLR individuals would be achieved using machine learning models derived from limb loading rate variability measures. Seventeen healthy control and fourteen post-ACLR participants with measured between-limb loading rate asymmetries completed the walking protocol. Ground reaction force data was collected on an instrumented treadmill where they performed walking trials at 1.5 m/s. Nonlinear limb loading rate measures extracted from the healthy controls and post-ACLR participants' data served as inputs to the models in order to train them to distinguish between the two states. A Decision Tree Classifier that utilized a bagging strategy was the best model for distinguishing between healthy control and post-ACLR participants. The model was successful in classifying participants, reporting an accuracy score of 73%, precision score of 100%, and an AUC score of 0.77, despite the smaller dataset. The ability to detect and classify post-ACLR loading rate variation has significant clinical implications, as these methods could be implemented in clinical settings to diagnose pathological limb loading dynamics and/or altered motor control.Clinical Relevance- This classification model can be easily integrated into the clinic to help diagnose pathological limb loading based solely on vertical ground reaction forces and can aid clinicians in providing data-driven metrics to help inform rehabilitation decisions.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Reconstrução do Ligamento Cruzado Anterior/métodos , Marcha , Caminhada
3.
Orthop J Sports Med ; 11(11): 23259671231211274, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38021311

RESUMO

Background: Patients often sustain prolonged neuromuscular dysfunction after anterior cruciate ligament reconstruction (ACLR). This dysfunction can present as interlimb loading rate asymmetries linked to reinjury and knee osteoarthritis progression. Purpose/Hypothesis: To evaluate how asymmetric walking protocols can reduce interlimb loading rate asymmetry in patients after ACLR. It was hypothesized that asymmetric walking perturbations would (1) produce a short-term adaptation of interlimb gait symmetry and (2) induce the temporary storage of these new gait patterns after the perturbations were removed. Study Design: Descriptive laboratory study. Methods: Fifteen patients who had undergone ACLR were asked to perform an asymmetric walking protocol during the study period (2022-2023). First, to classify each limb as overloaded or underloaded based on the vertical ground-reaction force loading rate for each limb, participants were asked to perform baseline symmetric walking trials. Participants then performed an asymmetric walking trial for 10 minutes, where one limb was moving 0.5 m/s faster than the other limb (1 vs 1.5 m/s), followed by a 2-minute 1 m/s symmetric deadaptation walking trial. This process was repeated with the limb speeds switched for a second asymmetric trial. Results: Participants adopted a new, symmetric interlimb loading rate gait pattern over time in response to the asymmetric trial, where the overloaded limb was set at 1 m/s. A linear mixed-effects model detected a significant change in gait dynamics (P < .001). The participants exhibited negative aftereffects after this asymmetric perturbation, indicating the temporary storage of the new gait pattern. No positive short-term gait adaptation or storage was observed when the overloaded limb was set to a faster speed. Conclusion: Asymmetric walking successfully produced the short-term adaptation of interlimb loading rate symmetry in patients after ACLR and induced the temporary storage of these gait patterns in the initial period when the perturbation was removed. Clinical Relevance: These findings are promising, as they suggest that asymmetric walking could serve as an effective gait retraining protocol that has the potential to improve long-term outcomes in patients after ACLR.

4.
Hum Mov Sci ; 92: 103152, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898010

RESUMO

The progressive death and dysfunction of neurons causes altered stride-to-stride variability in individuals with Amyotrophic Lateral Sclerosis (ALS) and Huntington's Disease (HD). Yet these altered gait dynamics can manifest differently in these populations based on how and where these neurodegenerative disorders attack the central nervous system. Time series analyses can quantify differences in stride time variability which can help contribute to the detection and identification of these disorders. Here, autoregressive modeling time series analysis was utilized to quantify differences in stride time variability amongst the Controls, the individuals with ALS, and the individuals with HD. For this study, fifteen Controls, 12 individuals with ALS and 15 individuals with HD walked up and down a hallway continuously for 5-min. Participants wore force sensitive resistors in their shoes to collect stride time data. A second order autoregressive (AR) model was fit to the time series created from the stride time data. The mean stride time and two AR model coefficients served as metrics to identify differences in stride time variability amongst the three groups. The individuals with HD walked with significantly greater stride time variability indicating a more chaotic gait while the individuals with ALS adopted more ordered, less variable stride time dynamics (p < 0.001). A plot of the stride time metrics illustrated how each group exhibited significantly different stride time dynamics. The stride time metrics successfully quantified differences in stride time variability amongst individuals with neurodegenerative disorders. This work provided valuable insight about how these neuromuscular disorders disrupt motor coordination leading to the adoption of new gait dynamics.


Assuntos
Esclerose Lateral Amiotrófica , Doença de Huntington , Doenças Neurodegenerativas , Humanos , Fatores de Tempo , Doenças Neurodegenerativas/diagnóstico , Marcha/fisiologia , Caminhada/fisiologia
5.
Gait Posture ; 102: 193-197, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037090

RESUMO

BACKGROUND: Unresolved neuromuscular deficits often persist in post-anterior cruciate ligament reconstruction (ACLR) individuals manifesting as altered impact and active peak force production during running that can contribute to detrimental limb loading. Elevated impact and active peaks are common in pathological populations indicating a stiffer limb loading strategy. Although impact and active peaks are sensitive to changes in limb loading, to our knowledge, there are no established, standardized measures or cutoff criteria to differentiate between healthy and pathological limb loading. However, prior studies have demonstrated that the ratio between traditional biomechanical measures can be used to successfully establish quantifiable and graphical ranges to delineate between healthy and pathological movement. RESEARCH QUESTION: Therefore, this study sought to exploit the impact-to-active peak ratio to generate a new, standardized metric to quantify and characterize limb loading dynamics in healthy controls and post-ACLR individuals during running. METHODS: Twenty-eight post-ACLR individuals and 18 healthy controls performed a running protocol. Impact peak and active peak data were extracted from their strides as they ran at a self-selected speed. A linear regression model was fit to the healthy control data and the models 95 % prediction intervals were used to define a boundary region of healthy limb loading dynamics. RESULTS: The post-ACLR individuals produced a higher impact-to-active peak ratio than the healthy controls indicating that they adopted a stiffer limb loading strategy. The boundary regions derived from the impact and active peak model successfully classified the healthy controls and post-ACLR individual's limb loading dynamics with an accuracy, sensitivity, and specificity of 89 %, 100 %, and 75 %, respectively. SIGNIFICANCE: The ability to effectively evaluate limb loading dynamics using impact and active peaks can provide clinicians with a new, non-invasive metric to quantify and characterize healthy and pathological movement in a clinical setting.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Corrida , Humanos , Lesões do Ligamento Cruzado Anterior/cirurgia , Extremidade Inferior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Movimento , Fenômenos Biomecânicos , Articulação do Joelho/cirurgia
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4546-4549, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892228

RESUMO

PURPOSE: Fatigue is often associated with increased injury risk. Many studies have focused on fatigue in the lower extremity muscles brought on by running, yet few have examined the relationship between fatigue of the core musculature and associated changes in running gait. To investigate the relationship between trunk fatigue and running dynamics, this study had two goals: (1) to use machine learning to determine which gait parameters are most associated with trunk fatigue; and (2) to develop a machine learning algorithm that uses those parameters to classify individuals with trunk fatigue. We hypothesized that we could effectively differentiate between the non-fatigued and fatigued states using machine learning models derived from running gait parameters. METHODS: Seventy-two individuals performed a trunk fatigue protocol. Lower extremity running biomechanics were collected pre- and post- the trunk fatigue protocol using an instrumented treadmill and 10-camera motion capture system.The fatiguing protocol involved executing a series of trunk fatiguing exercises until established fatigue criteria were reached. Gait variables extracted from the non-fatigued and fatigued states served as model inputs to aid in the development of the machine learning model that would distinguish between non-fatigued and fatigued running. RESULTS: The machine learning protocol determined three variables - stance time, maximum propulsive GRF and maximum braking GRF - to be the best discriminators between non-fatigued and fatigued running. The SVM with Bagging was the best performing model that discriminated between non-fatigued and fatigued running with an accuracy of 82%, precision of 77%, recall of 90%, and area under the receiver operating curve of 0.91. CONCLUSION: The machine learning model was effective in classifying between non-fatigued and fatigued running using three gait parameters extracted from GRF waveforms. The ability to classify fatigue using these easy to measure GRF derived parameters enhances the ability for the model to be integrated into wearable technology and the clinical setting to aid in the detection of fatigue and potentially injury, as fatigue is often a precursor to injury.Clinical Relevance- This model has the potential to be implemented in a clinical setting to determine the onset of trunk fatigue through basic gait analysis, involving only the ground reaction forces. This model would be aimed toward injury prevention since fatigue is linked to increased risk of injury.


Assuntos
Corrida , Fenômenos Biomecânicos , Fadiga/diagnóstico , Marcha , Humanos , Tronco
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4683-4686, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892258

RESUMO

PURPOSE: Stress fractures are common overuse running injuries. Individuals with stress fractures exhibit running biomechanics characterized by elevated impact peak and loading rate. While elevated impact peak and loading rate are associated with stress fractures, there are few established metrics used to identify the presence of stress fractures in individuals. Here this study aims to exploit the linear relationship between the impact peak and loading rate to establish a metric to help identify individuals with stress fractures. We hypothesize that the ratio between the impact peak and loading rate will serve as a metric to delineate between healthy controls and those with stress fractures. METHODS: Fifteen healthy controls and 11 individuals with stress fractures performed a running protocol. A linear regression model fit to the stress fracture impact peak and loading rate data produced a lower 95% confidence limit boundary that served as the demarcation line between the two groups. RESULTS: Individuals with stress fractures tended to reside above the line with the line accurately classifying 82% of the individuals with stress fractures. CONCLUSION: The analysis supported the hypothesis and demonstrated how the relationship between impact peak and loading rate can help identify the presence of stress fractures in individuals.Clinical Relevance- The relationship between impact peak and loading rate has the potential to serve as clinically useful metric to identify stress fractures during running.


Assuntos
Fraturas de Estresse , Corrida , Fenômenos Biomecânicos , Fraturas de Estresse/diagnóstico , Fraturas de Estresse/epidemiologia , Humanos
8.
Med Sci Sports Exerc ; 53(2): 275-279, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32701872

RESUMO

PURPOSE: Peak vertical ground reaction force and linear loading rate can be valuable metrics for return-to-sport assessment because they represent limb loading dynamics; yet, there is no defined cutoff criterion to differentiate between healthy and altered limb loading. Studies have shown that healthy individuals exhibit strong first-order relationships between gait variables whereas individuals with pathological conditions did not. Thus, this study sought to explore and exploit this first-order relationship to define a region of healthy limb dynamics, which individuals with pathological conditions would reside outside of, to rapidly assess individuals with altered limb loading dynamics for return to sport. We hypothesized that there would be a strong first-order linear relationship between vertical ground reaction force peak force and linear loading rate in healthy controls' limbs, which could be exploited to identify abnormal limb loading dynamics in post-anterior cruciate ligament reconstruction (ACLR) individuals. METHODS: Thirty-one post-ACLR individuals and 31 healthy controls performed a running protocol. A first-order regression analysis modeled the relationship between peak vertical ground reaction forces and linear vertical ground reaction force loading rate in the healthy control limbs to define a region of healthy dynamics to evaluate post-ACLR reconstructed limb dynamics. RESULTS: A first-order regression model aided in the determination of cutoff criteria to define a region of healthy limb dynamics. Ninety percent of the post-ACLR reconstructed limbs exhibited abnormal limb dynamics based on their location outside of the region of healthy dynamics. CONCLUSION: This approach successfully delineated between healthy and abnormal limb loadings dynamics in controls and post-ACLR individuals. The findings demonstrate how force and loading rate-dependent metrics can help develop criteria for individualized post-ACLR return-to-sport assessment.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/reabilitação , Teste de Esforço/métodos , Extremidade Inferior/fisiologia , Volta ao Esporte , Adolescente , Adulto , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Fenômenos Biomecânicos , Humanos , Análise de Regressão , Corrida/fisiologia , Adulto Jovem
9.
PLoS One ; 15(12): e0243221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270770

RESUMO

Gait asymmetry is often observed in populations with varying degrees of neuromuscular control. While changes in vertical ground reaction force (vGRF) peak magnitude are associated with altered limb loading that can be observed during asymmetric gait, the challenge is identifying techniques with the sensitivity to detect these altered movement patterns. Autoregressive (AR) modeling has successfully delineated between healthy and pathological gait during running; but has been little explored in walking. Thus, AR modeling was implemented to assess differences in vGRF pattern dynamics during symmetric and asymmetric walking. We hypothesized that the AR model coefficients would better detect differences amongst the symmetric and asymmetric walking conditions than the vGRF peak magnitude mean. Seventeen healthy individuals performed a protocol that involved walking on a split-belt instrumented treadmill at different symmetric (0.75m/s, 1.0 m/s, 1.5 m/s) and asymmetric (Side 1: 0.75m/s-Side 2:1.0 m/s; Side 1:1.0m/s-Side 2:1.5 m/s) gait conditions. Vertical ground reaction force peaks extracted during the weight-acceptance and propulsive phase of each step were used to construct a vGRF peak time series. Then, a second order AR model was fit to the vGRF peak waveform data to determine the AR model coefficients. The resulting AR coefficients were plotted on a stationarity triangle and their distance from the triangle centroid was computed. Significant differences in vGRF patterns were detected amongst the symmetric and asymmetric conditions using the AR modeling coefficients (p = 0.01); however, no differences were found when comparing vGRF peak magnitude means. These findings suggest that AR modeling has the sensitivity to identify differences in gait asymmetry that could aid in monitoring rehabilitation progression.


Assuntos
Análise da Marcha/métodos , Marcha/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Voluntários Saudáveis , Humanos , Masculino , Modelos Teóricos
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4811-4814, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019067

RESUMO

Despite extensive rehabilitation, nearly half of all post-anterior cruciate ligament reconstruction (ACLR) individuals are unable to perform dynamic tasks at the level they did prior to their injury. This inability can be attributed to unresolved neuromuscular deficits that manifest as altered limb dynamics. While traditional discrete metrics; such as peak vertical ground reaction force (vGRF) and peak knee flexion angle, have been used to successfully differentiate between healthy and pathological running dynamics, recent studies have shown that non-traditional metrics derived from autoregressive (AR) modeling and Smoothed Pseudo Wigner-Ville (SPWV) analysis techniques can also successfully delineate between healthy and pathological populations and could potentially possess greater sensitivity than the traditional metrics. Thus, the objective of this study was to compare the performance of classification models generated from traditional and nontraditional metrics collected from healthy controls and post-ACLR individuals during a running protocol. We hypothesized that the non-traditional metric-based classification model would outperform the traditional metric based model. Thirty-one controls and 31 post-ACLR individuals performed a running protocol from which the traditional metrics - peak vGRF, linear vGRF loading rate and peak knee flexion angle - and nontraditional metrics - dynamic vGRF ratio, AR model coefficients, and a SPWV derived low frequency-high frequency ratio - were extracted from vGRF and knee flexion running waveforms. The results indicated that a fine Gaussian SVM classification model derived from the non-traditional metrics had an accuracy of 87%, specificity of 83% and sensitivity of 61% and it outperformed the classification model derived from traditional metrics. These findings indicate that additional, valuable information can be ascertained from non-traditional metrics that evaluate waveform dynamics. Additionally, it suggests that this or similar models can be used to track the restoration of healthy running dynamics in post-ACLR individuals during rehabilitation.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Corrida , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Humanos
11.
BMC Neurol ; 19(1): 316, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818276

RESUMO

BACKGROUND: Huntington's disease (HD) is a progressive, neurological disorder that results in both cognitive and physical impairments. These impairments affect an individual's gait and, as the disease progresses, it significantly alters one's stability. Previous research found that changes in stride time patterns can help delineate between healthy and pathological gait. Autoregressive (AR) modeling is a statistical technique that models the underlying temporal patterns in data. Here the AR models assessed differences in gait stride time pattern stability between the controls and individuals with HD. Differences in stride time pattern stability were determined based on the AR model coefficients and their placement on a stationarity triangle that provides a visual representation of how the patterns mean, variance and autocorrelation change with time. Thus, individuals who exhibit similar stride time pattern stability will reside in the same region of the stationarity triangle. It was hypothesized that individuals with HD would exhibit a more altered stride time pattern stability than the controls based on the AR model coefficients and their location in the stationarity triangle. METHODS: Sixteen control and twenty individuals with HD performed a five-minute walking protocol. Time series' were constructed from consecutive stride times extracted during the protocol and a second order AR model was fit to the stride time series data. A two-sample t-test was performed on the stride time pattern data to identify differences between the control and HD groups. RESULTS: The individuals with HD exhibited significantly altered stride time pattern stability than the controls based on their AR model coefficients (AR1 p < 0.001; AR2 p < 0.001). CONCLUSIONS: The AR coefficients successfully delineated between the controls and individuals with HD. Individuals with HD resided closer to and within the oscillatory region of the stationarity triangle, which could be reflective of the oscillatory neuronal activity commonly observed in this population. The ability to quantitatively and visually detect differences in stride time behavior highlights the potential of this approach for identifying gait impairment in individuals with HD.


Assuntos
Transtornos Neurológicos da Marcha/fisiopatologia , Marcha/fisiologia , Doença de Huntington/fisiopatologia , Modelos Estatísticos , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Caminhada/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...