Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R670-R681, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121142

RESUMO

Placenta ischemia, the initiating event in preeclampsia (PE), is associated with fetal growth restriction. Inhibition of the agonistic autoantibody against the angiotensin type 1 receptor AT1-AA, using an epitope-binding inhibitory peptide ('n7AAc') attenuates increased blood pressure at gestational day (G)19 in the clinically relevant reduced uterine perfusion pressure (RUPP) model of PE. Thus we tested the hypothesis that maternal administration of 'n7AAc' does not transfer to the fetus, improves uterine blood flow and fetal growth, and attenuates elevated placental expression of miRNAs implicated in PE and FGR. Sham or RUPP surgery was performed at G14 with vehicle or 'n7AAc' (144 µg/day) administered via an osmotic pump from G14 to G20. Maternal plasma levels of the peptide on G20 were 16.28 ± 4.4 nM, and fetal plasma levels were significantly lower at 1.15 ± 1.7 nM (P = 0.0007). The uterine artery resistance index was significantly elevated in RUPP (P < 0.0001) but was not increased in 'n7AAc'-RUPP or 'n7AAc'-Sham versus Sham. A significant reduction in fetal weight at G20 in RUPP (P = 0.003) was not observed in 'n7AAc'-RUPP. Yet, percent survival was reduced in RUPP (P = 0.0007) and 'n7AAc'-RUPP (P < 0.0002). Correlation analysis indicated the reduction in percent survival during gestation was specific to the RUPP (r = 0.5342, P = 0.043) and independent of 'n7AAc'. Placental miR-155 (P = 0.0091) and miR-181a (P = 0.0384) expression was upregulated in RUPP at G20 but was not elevated in 'n7AAc'-RUPP. Collectively, our results suggest that maternal administration of 'n7AAc' does not alter fetal growth in the RUPP implicating its potential as a therapeutic for the treatment of PE.NEW & NOTEWORTHY The seven amino acid inhibitory peptide to the AT1-AA ('n7AAc') has limited transfer to the fetus at gestational day 20, improves uterine blood flow and fetal growth in the reduced uterine perfusion pressure model of preeclampsia (PE), and does not impair fetal survival during gestation in sham-operated or placental ischemic rats. Collectively, these findings suggest that maternal administration of 'n7AAc' as an effective strategy for the treatment of PE is associated with improved outcomes in the fetus.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Animais , Feminino , Humanos , Gravidez , Ratos , Aminoácidos/metabolismo , Autoanticorpos/metabolismo , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Epitopos/metabolismo , Desenvolvimento Fetal , Isquemia , MicroRNAs/metabolismo , Peptídeos/farmacologia , Placenta/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Artéria Uterina
2.
Clin Sci (Lond) ; 135(19): 2307-2327, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34643675

RESUMO

Preeclampsia (PE), the leading cause of maternal and fetal morbidity and mortality, is associated with poor fetal growth, intrauterine growth restriction (IUGR) and low birth weight (LBW). Offspring of women who had PE are at increased risk for cardiovascular (CV) disease later in life. However, the exact etiology of PE is unknown. Moreover, there are no effective interventions to treat PE or alleviate IUGR and the developmental origins of chronic disease in the offspring. The placenta is critical to fetal growth and development. Epigenetic regulatory processes such as histone modifications, microRNAs and DNA methylation play an important role in placental development including contributions to the regulation of trophoblast invasion and remodeling of the spiral arteries. Epigenetic processes that lead to changes in placental gene expression in PE mediate downstream effects that contribute to the development of placenta dysfunction, a critical mediator in the onset of PE, impaired fetal growth and IUGR. Therefore, this review will focus on epigenetic processes that contribute to the pathogenesis of PE and IUGR. Understanding the epigenetic mechanisms that contribute to normal placental development and the initiating events in PE may lead to novel therapeutic targets in PE that improve fetal growth and mitigate increased CV risk in the offspring.


Assuntos
Doenças Cardiovasculares/genética , Epigênese Genética , Desenvolvimento Fetal , Retardo do Crescimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Placenta/metabolismo , Pré-Eclâmpsia/genética , Animais , Pressão Sanguínea/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Montagem e Desmontagem da Cromatina , Metilação de DNA , Feminino , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/fisiopatologia , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Placenta/fisiopatologia , Placentação/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Prognóstico , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...