Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5235, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898016

RESUMO

IS1111 and IS110 insertion sequence (IS) family members encode an unusual DEDD transposase type and exhibit specific target site selection. The IS1111 group include identifiable subterminal inverted repeats (sTIR) not found in the IS110 type1. IS in both families include a noncoding region (NCR) of significant length and, as each individual IS or group of closely related IS selects a different site, we had previously proposed that an NCR-derived RNA was involved in target selection2. Here, we find that the NCR is usually downstream of the transposase gene in IS1111 family IS and upstream in the IS110 type. Four IS1111 and one IS110 family members that target different sequences are used to demonstrate that the NCR determines a short seeker RNA (seekRNA) that co-purified with the transposase. The seekRNA is essential for transposition of the IS or a cargo flanked by IS ends from and to the preferred target. Short sequences matching both top and bottom strands of the target are present in the seekRNA but their order in IS1111 and IS110 family IS is reversed. Reprogramming the seekRNA and donor flank to target a different site is demonstrated, indicating future biotechnological potential for these systems.


Assuntos
Elementos de DNA Transponíveis , Transposases , Transposases/metabolismo , Transposases/genética , Elementos de DNA Transponíveis/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Sequência de Bases
2.
J Antimicrob Chemother ; 79(7): 1569-1576, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742708

RESUMO

BACKGROUND: The aac(6')-Im (aacA16) amikacin, netilmicin and tobramycin resistance gene cassette had been circulating globally undetected for many years in a sublineage of Acinetobacter baumannii global clone 2. OBJECTIVES: To identify sources for the aac(6')-Im fragment found in A. baumannii. METHODS: MinION long-read sequencing and Unicycler hybrid assemblies were used to determine the genetic context of the aac(6')-Im gene. Quantitative reverse transcriptase PCR was used to measure expression. RESULTS: Among >60 000 non-Acinetobacter draft genomes in the MRSN collection, the aac(6')-Im gene was detected in Pseudomonas putida and Enterobacter hormaechei isolates recovered from patients in Thailand between 2016 and 2019. Genomes of multiply resistant P. putida MRSN365855 and E. hormaechei MRSN791417 were completed. The class 1 integron containing the aac(6')-Im cassette was in the chromosome in MRSN365855, and in an HI2 plasmid in MRSN791417. However, MRSN791417 was amikacin susceptible and the gene was not expressed due to loss of the Pc promoter of the integron. Further examples of aac(6')-Im in plasmids from or the chromosome of various Gram-negative species were found in the GenBank nucleotide database. The aac(6')-Im context in integrons in pMRSN791417-8 and a Klebsiella plasmid pAMR200031 shared similarities with the aac(6')-Im region of AbGRI2-Im islands in A. baumannii. In other cases, the cassette array including the aac(6')-Im cassette was different. CONCLUSIONS: The aac(6')-Im gene is widespread, being found so far in several different species and in several different gene cassette arrays. The lack of amikacin resistance in E. hormaechei highlights the importance of correlating resistance gene content and antibiotic resistance phenotype.


Assuntos
Acinetobacter baumannii , Aminoglicosídeos , Antibacterianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Humanos , Aminoglicosídeos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Tailândia , Integrons/genética , Plasmídeos/genética , Amicacina/farmacologia , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Proteínas de Bactérias/genética , Tobramicina/farmacologia , Acetiltransferases/genética , Genoma Bacteriano
3.
Plasmid ; 129-130: 102722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38631562

RESUMO

The predominant type of plasmids found in Acinetobacter species encode a Rep_3 initiation protein and many of these carry their accessory genes in dif modules. Here, available sequences of the 14 members of the group of Rep_3 plasmids typed as R3-T33, using a threshold of 95% identity in the repA gene, were compiled and compared. These plasmids were from various Acinetobacter species. The pdif sites were identified allowing the backbone and dif modules to be defined. As for other Rep_3 plasmids carrying dif modules, orfX encoding a protein of unknown function was found downstream of repA followed by a pdif site in the orientation XerC binding site-spacer-XerD binding site. Most backbones (n = 12) also included mobA and mobC genes but the two plasmids with the most diverged repA and orfX genes had different backbone contents. Although the gene content of the plasmid backbone was largely conserved, extensive recombinational exchange was detected and only two small groups carried identical or nearly identical backbones. Individual plasmids were associated with 1 to 13 dif modules. Many different dif modules were identified, including ones containing antibiotic or chromate resistance genes and several toxin/antitoxin gene pairs. In some cases, modules carrying the same genes were significantly diverged. Generally, the orientation of the pdif sites alternated such that C modules (XerC binding sites internal) alternated with D modules (XerD binding sites internal). However, fusions of two dif modules via mutational inactivation or loss of a pdif site were also detected.


Assuntos
Acinetobacter , Plasmídeos , Acinetobacter/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Bacteriano/genética , Sequência de Bases , Filogenia , Transativadores/genética , Transativadores/metabolismo , DNA Helicases
4.
Microbiol Mol Biol Rev ; 88(2): e0011922, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38436262

RESUMO

SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.


Assuntos
Elementos de DNA Transponíveis , Bactérias Gram-Negativas , Elementos de DNA Transponíveis/genética , Bactérias Gram-Negativas/genética , Genoma Bacteriano , Farmacorresistência Bacteriana/genética , Transposases/metabolismo , Transposases/genética , Antibacterianos/farmacologia , Transferência Genética Horizontal
5.
J Antimicrob Chemother ; 79(5): 1014-1018, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530861

RESUMO

BACKGROUND: The Acinetobacter baumannii isolate called SMAL, previously used to determine the structures of capsular polysaccharide and lipooligosaccharide, was recovered in Pavia, Italy in 2002 among the collection of aminoglycoside-resistant isolates designated as SMAL type. This type was later called the Italian clone, then ST78. ST78 isolates are now widely distributed. OBJECTIVES: To establish the resistance gene complement and the location and structure of acquired resistance regions in early members of the Italian/ST78 clone. METHODS: The draft genome of SMAL2002 was assembled from Illumina MiSeq reads. Contigs containing resistance genes were joined and located in the chromosome using PCR with custom primers. The resistance profile was determined using disc diffusion. RESULTS: SMAL2002 is an ST78A isolate and includes three aminoglycoside resistance genes, aadB (gentamicin, kanamycin, tobramycin) aphA1 (kanamycin, neomycin) and aac(6')-Ian (amikacin, kanamycin, tobramycin). The aadB gene cassette is incorporated at a secondary site in a relative of the aphA1-containing, IS26-bounded pseudo-compound transposon, PTn6020. The aac(6')-Ian gene is in an adjacent IS26-bounded structure that includes sul2 (sulphonamide) and floR (florfenicol) resistance genes. The two pseudo-compound transposons overlap and are in the chromosomal hutU gene flanked by an 8 bp target site duplication. Although aac(6')-Ian was not noticed previously, the same genes and structures were found in several available draft genomes of early ST78A isolates. CONCLUSIONS: This study highlights the importance of correlating resistance profiles with resistance gene content. The location of acquired resistance genes in the SMAL2002 chromosome represents the original location in the ST78A lineage of ST78.


Assuntos
Acinetobacter baumannii , Aminoglicosídeos , Antibacterianos , Cromossomos Bacterianos , Farmacorresistência Bacteriana , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Aminoglicosídeos/farmacologia , Itália , Antibacterianos/farmacologia , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana/genética , Humanos , Ilhas Genômicas/genética , Elementos de DNA Transponíveis/genética , Genes Bacterianos/genética , Análise de Sequência de DNA , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/microbiologia , Reação em Cadeia da Polimerase , Genoma Bacteriano , DNA Bacteriano/genética
6.
Carbohydr Res ; 535: 109020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150754

RESUMO

K63 capsular polysaccharide produced by Acinetobacter baumannii isolate LUH5551 (previously designated isolate O24) was re-examined using sugar analysis, Smith degradation, and one- and two-dimensional 1H and 13C NMR spectroscopy. Though previously reported as O24 consisting of linear tetrasaccharide units that include a 7-acetamido-5-acylamino form of 8-epilegionaminic acid [8eLeg5R7Ac, acylated at C5 with (S)-3-hydroxybutanoyl or acetyl (1:1)], the elucidated structure of the K63 type capsule was found to include a derivative of 5,7-diamino-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic (legionaminic) acid, Leg5Ac7R, where R is either (S)-3-hydroxybutanoyl or an acetyl group (∼1:1 ratio). This finding is consistent with the presence of the lgaABCHIFG gene module for Leg5Ac7R biosynthesis in the KL63 gene cluster at the capsular polysaccharide (CPS) biosynthesis K locus in the LUH5551 genome. The glycosyltransferases (Gtrs) and Wzy polymerase encoded by KL63 were assigned to linkages in the linear K63 tetrasaccharide unit and linkage of the K63 units.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Polissacarídeos/análise , Ácidos Siálicos/química , Família Multigênica , Polissacarídeos Bacterianos/química
7.
Microbiol Spectr ; 11(6): e0302523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37975684

RESUMO

IMPORTANCE: Bacteriophage show promise for the treatment of Acinetobacter baumannii infections that resist all therapeutically suitable antibiotics. Many tail-spike depolymerases encoded by phage that are able to degrade A. baumannii capsular polysaccharide (CPS) exhibit specificity for the linkage present between K-units that make up CPS polymers. This linkage is formed by a specific Wzy polymerase, and the ability to predict this linkage using sequence-based methods that identify the Wzy at the K locus could assist with the selection of phage for therapy. However, little is known about the specificity of Wzy polymerase enzymes. Here, we describe a Wzy polymerase that can accommodate two different but similar sugars as one of the residues it links and phage depolymerases that can cleave both types of bond that Wzy forms.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Humanos , Acinetobacter baumannii/genética , Cápsulas Bacterianas/metabolismo , Família Multigênica , Polissacarídeos Bacterianos/análise
8.
Plasmid ; 128: 102707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37678515

RESUMO

The complete genome of RBH2, a sporadic, carbapenem resistant ST111 Acinetobacter baumannii isolate from Brisbane, Australia was determined and analysed. RBH2 is extensively resistant and the chromosome includes two transposons carrying antibiotic resistance genes, AbaR4 (oxa23 in Tn2006) and Tn7::Tn2006 (dfrA1, sat2, aadA1, oxa23). The chromosome also includes two copies of Tn6175, a transposon carrying putative copper resistance genes, and 1-17 copies of six different insertion sequences. RBH2 has six plasmids ranging in size from 6 kb - 141 kb, four carrying antibiotic resistance genes. Plasmids pRBH2-1 (aadB) and pRBH2-2 (aphA6 in TnaphA6) were found to be essentially identical to known plasmids pRAY*-v1 and pS21-1, respectively. The largest plasmids, pRBH2-5 (oxa23 in AbaR4) and pRBH2-6 (oxa23 in AbaR4::ISAba11 and sul2, tet(B), strA and strB in Tn6172) have known transfer-proficient relatives. pRBH2-5, an RP-T1 (RepAci6) plasmid, also carries a different putative copper resistance transposon related to Tn6177 found in pS21-2. The backbone of pRBH2-5 is related to those of previously described RepAci6 plasmids pAb-G7-2 and pA85-3 but has some distinctive features. Three different RepAci6 backbone types were distinguished, Type 1 (pAb-G7-2), Type 2 (pA85-3) and Type 3 (pRBH2-5 and pS21-2). pRBH2-6 is closely related to pAB3 and their backbones differ by only 5 SNPs. Plasmids pRBH2-3 and pRBH2-4 do not carry antibiotic resistance genes. pRBH2-3 does not include an identifiable rep gene and is a novel plasmid type. pRBH2-4 is of the R3-T3 type and includes segments of the larger pABTJ2 that heads this group. Other ST111 genomes carry different plasmids.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacologia , Plasmídeos/genética , Elementos de DNA Transponíveis/genética , Acinetobacter baumannii/genética , Cobre , Infecções por Acinetobacter/genética , Análise de Sequência de DNA
9.
Microbiol Spectr ; 11(4): e0120423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409961

RESUMO

The aminoglycoside antibiotics amikacin, gentamicin, and tobramycin are important therapeutic options for Acinetobacter iinfections. Several genes that confer resistance to one or more of these antibiotics are prevalent in the globally distributed resistant clones of Acinetobacter baumannii, but the aac(6')-Im (aacA16) gene (amikacin, netilmicin, and tobramycin resistance), first reported in isolates from South Korea, has rarely been reported since. In this study, GC2 isolates (1999 to 2002) from Brisbane, Australia, carrying aac(6')-Im and belonging to the ST2:ST423:KL6:OCL1 type were identified and sequenced. The aac(6')-Im gene and surrounds have been incorporated into one end of the IS26-bounded AbGRI2 antibiotic resistance island and are accompanied by a characteristic 70.3-kbp deletion of adjacent chromosome. The compete genome of the 1999 isolate F46 (RBH46) includes only two copies of ISAba1 (in AbGRI1-3 and upstream of ampC) but later isolates, which differ from one another by <10 single nucleotide differences (SND), carry two to seven additional shared copies. Several complete GC2 genomes with aac(6')-Im in an AbGRI2 island (2004 to 2017; several countries) found in GenBank and two additional Australian A. baumannii isolates (2006) carry different gene sets, KL2, KL9, KL40, or KL52, at the capsule locus. These genomes include ISAba1 copies in a different set of shared locations. The distribution of SND between F46 and AYP-A2, a 2013 ST2:ST208:KL2:OCL1 isolate from Victoria, Australia, revealed that a 640-kbp segment that includes KL2 and the AbGRI1 resistance island replaces the corresponding region in F46. Over 1,000 A. baumannii draft genomes also include aac(6')-Im, indicating that it is currently globally disseminated and significantly underreported. IMPORTANCE Aminoglycosides are important therapeutic options for treatment of Acinetobacter infections. Here, we show that a little-known aminoglycoside resistance gene, aac(6')-Im (aacA16), that confers amikacin, netilmicin, and tobramycin resistance has been circulating undetected for many years in a sublineage of A. baumannii global clone 2 (GC2), generally with a second aminoglycoside resistance gene, aacC1, which confers resistance to gentamicin. These two genes are commonly found together in GC2 complete and draft genomes and globally distributed. One isolate appears to be ancestral, as its genome contains few ISAba1 copies, providing insight into the original source of this insertion sequence (IS), which is abundant in most GC2 isolates. Tracking ISAba1 spread can provide a simple means to track the development and ongoing evolution as well as the dissemination of specific lineages and detect the formation of many sublineages. The complete ancestral genome will provide an essential base point for tracking this process.


Assuntos
Acinetobacter baumannii , Amicacina , Amicacina/farmacologia , Netilmicina , Tobramicina/farmacologia , Acinetobacter baumannii/genética , Proteína 1 Semelhante a Receptor de Interleucina-1 , Austrália , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Gentamicinas , Células Clonais , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
10.
Plasmid ; 127: 102698, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37516393

RESUMO

An IncC or IncA plasmid is needed to enable transfer of SGI1 type integrative mobilisable elements but an IncC plasmid does not stably co-exist with SGI1. However, the plasmid is stably maintained with SGI1-K, a natural SGI1 deletion variant that lacks the sgaDC genes (S007 and S006) and the upstream open reading frame (S008) found in the SGI1 backbone. Here, the effect of the sgaDC genes and S008 on the stability of an IncC plasmid in an Escherichia coli strain with or without SGI1-K was examined. Co-transcription of the S008 open reading frame with the downstream sgaDC genes was established. When a strain containing SGI1-K complemented with a pK18 plasmid that included S008-sgaDC or sgaDC expressed from the constitutive pUC promoter was grown without antibiotic selection, the resident IncC plasmid was rapidly lost but loss was slower when S008 was present. In contrast, SGI1-K and the S008-sgaDC or sgaDC plasmid were quite stably maintained for >100 generations. However, the high copy number plasmids carrying the SGI1-derived S008-sgaDC or sgaDC genes constitutively expressed could not be introduced into an E. coli strain carrying the IncC plasmid but without SGI1-K. Using equivalent plasmids with S008-sgaDC or sgaDC genes controlled by an arabinose-inducible promoter, under inducing conditions the IncC plasmid was stable but the plasmid containing the SGI1-derived genes was rapidly lost. This unexpected observation indicates that there are multiple interactions between the IncC plasmid and SGI1 in which the transcriptional activator genes sgaDC play a role. These interactions will require further investigation.


Assuntos
Escherichia coli , Ilhas Genômicas , Plasmídeos/genética , Escherichia coli/genética , Antibacterianos/farmacologia , Óperon , Farmacorresistência Bacteriana Múltipla/genética
11.
FEMS Microbes ; 4: xtad009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333444

RESUMO

Acinetobacter baumannii is a Gram-negative bacterium increasingly implicated in hospital-acquired infections and outbreaks. Effective prevention and control of such infections are commonly challenged by the frequent emergence of multidrug-resistant strains. Here we introduce Ab-web (https://www.acinetobacterbaumannii.no), the first online platform for sharing expertise on A. baumannii. Ab-web is a species-centric knowledge hub, initially with 10 articles organized into two main sections, 'Overview' and 'Topics', and three themes, 'epidemiology', 'antibiotic resistance', and 'virulence'. The 'workspace' section provides a spot for colleagues to collaborate, build, and manage joint projects. Ab-web is a community-driven initiative amenable to constructive feedback and new ideas.

12.
Microbiol Spectr ; 11(4): e0156623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358447

RESUMO

The insertion sequence IS26 plays a key role in the spread of antibiotic resistance genes in Gram-negative bacteria. IS26 and members of the IS26 family are able to use two distinct mechanisms to form cointegrates made up of two DNA molecules linked via directly oriented copies of the IS. The well-known copy-in (formerly replicative) reaction occurs at very low frequency, and the more recently discovered targeted conservative reaction, which joins two molecules that already include an IS, is substantially more efficient. Experimental evidence has indicated that, in the targeted conservative mode, the action of Tnp26, the IS26 transposase, is required only at one end. How the Holliday junction (HJ) intermediate generated by the Tnp26-catalyzed single-strand transfer is processed to form the cointegrate is not known. We recently proposed that branch migration and resolution via the RuvABC system may be needed to process the HJ; here, we have tested this hypothesis. In reactions between a wild-type and a mutant IS26, the presence of mismatched bases near one IS end impeded the use of that end. In addition, evidence of gene conversion, potentially consistent with branch migration, was detected in some of the cointegrates formed. However, the targeted conservative reaction occurred in strains that lacked the recG, ruvA, or ruvC genes. As the RuvC HJ resolvase is not required for targeted conservative cointegrate formation, the HJ intermediate formed by the action of Tnp26 must be resolved by an alternate route. IMPORTANCE In Gram-negative bacteria, the contribution of IS26 to the spread of antibiotic resistance and other genes that provide cells with an advantage under specific conditions far exceeds that of any other known insertion sequence. This is likely due to the unique mechanistic features of IS26 action, particularly its propensity to cause deletions of adjacent DNA segments and the ability of IS26 to use two distinct reaction modes for cointegrate formation. The high frequency of the unique targeted conservative reaction mode that occurs when both participating molecules include an IS26 is also key. Insights into the detailed mechanism of this reaction will help to shed light on how IS26 contributes to the diversification of the bacterial and plasmid genomes it is found in. These insights will apply more broadly to other members of the IS26 family found in Gram-positive as well as Gram-negative pathogens.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Escherichia coli , DNA Cruciforme , Plasmídeos , Replicação do DNA , Bactérias Gram-Negativas/genética , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética
13.
Microbiol Spectr ; 11(3): e0046223, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140387

RESUMO

An outbreak involving an extensively antibiotic-resistant Acinetobacter baumannii strain in three military treatment facilities was identified. Fifty-nine isolates recovered from 30 patients over a 4-year period were found among a large collection of isolates using core genome multilocus sequence typing (MLST). They differed by only 0 to 18 single nucleotide polymorphisms (SNPs) and carried the same resistance determinants except that the aphA6 gene was missing in 25 isolates. They represent a novel sublineage of GC1 lineage 1 that likely originated in Afghanistan. IMPORTANCE A. baumannii is recognized as one of the most important nosocomial pathogens, and carbapenem-resistant strains pose a particularly difficult treatment challenge. Outbreaks linked to this pathogen are reported worldwide, particularly during periods of societal upheaval, such as natural disasters and conflicts. Understanding how this organism enters and establishes itself within the hospital environment is key to interrupting transmission, but few genomic studies have examined these transmissions over a prolonged period. Though historical, this report provides an in-depth analysis of nosocomial transmission of this organism across continents and within and between different hospitals.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecção Hospitalar , Militares , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tipagem de Sequências Multilocus , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/tratamento farmacológico , Testes de Sensibilidade Microbiana , Surtos de Doenças , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , beta-Lactamases/genética
14.
J Glob Antimicrob Resist ; 33: 337-344, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37225002

RESUMO

OBJECTIVES: The aim of this study was to characterise an early clinical multiply antibiotic resistant Acinetobacter baumannii global clone 1 (GC1) isolate from Africa. METHODS: The draft genome sequence was determined using short-read (Illumina MiSeq) sequence data and compared to other early GC1 isolates. Resistance genes and other features were identified using various bioinformatics tools. Plasmids were visualised. RESULTS: LUH6050, recovered in South Africa between January 1997 and January 1999, is ST1IP:ST231Ox:KL1:OCL1. Several antibiotic resistance genes (aacC1, aadA2, aphA1, catA1, sul1, and tetA(A)) reside in AbaR32. LUH6050 also includes the plasmid pRAY*, carrying the aadB gentamicin and tobramycin resistance gene, and a 29.9 kb plasmid, pLUH6050-3, carrying the msrE-mphE (macrolide resistance) and dfrA44 (trimethoprim resistance) genes and a small cryptic Rep_1 plasmid. Plasmid pLUH6050-3, a cointegrate of pA1-1 (R3-T1; RepAci1) with an R3-T33 type plasmid encoding a different Rep_3 family Rep, carries 15 pdif sites and 13 dif modules, including those that carry the mrsE-mphE and dfrA44 genes and three that include toxin-antitoxin gene pairs. The closest relative of pLUH6050-3 found in GenBank was from an unrelated 2013 Tanzanian A. baumannii isolate. The chromosome has an AbaR0-type region in comM and includes no ISAba1 copies. Similar features were found in most other sequenced lineage 1 GC1 isolates recovered prior to 2000. CONCLUSION: LUH6050 represents an early form of the GC1 lineage 1, supplementing limited information about early isolates and isolates from Africa. These data contribute to the understanding of the emergence, evolution, and dissemination of the A. baumannii GC1 clonal complex.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , África do Sul , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla/genética , Macrolídeos
15.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36880881

RESUMO

Several insertion sequences (IS) found in various Acinetobacter species exhibit target specificity. They are found, in the same orientation, 5 bp from the XerC binding site of the pdif sites associated with dif modules in Acinetobacter plasmids, and searches revealed they are also found near chromosomal dif sites of Acinetobacter species. These IS are 1.5 kb long, bounded by 24-26 bp imperfect terminal inverted repeats (TIRs) and encode a large transposase of 441-457 aa. They generate 5 bp target site duplications (TSDs). Structural predictions of the ISAjo2 transposase, TnpAjo2, modelled on TnsB of Tn7 revealed two N-terminal HTH domains followed by an RNaseH fold (DDE domain), a ß barrel and a C-terminal domain. Similar to Tn7, the outer IS ends are 5'-TGT and ACA-3', and an additional Tnp binding site, corresponding to the internal portion of the IR, is found near each end. However, the Acinetobacter IS do not encode further proteins related to those required by Tn7 for targeted transposition, and the transposase may interact directly with XerC bound to a dif-like site. We propose that these IS, currently in the IS1202 group in the not characterized yet (NCY) category in ISFinder, are part of a distinct IS1202 family. Other IS listed as in the IS1202 group encode transposases related to TnpAjo2 (25-56 % amino acid identity) and have similar TIRs but fall into three groups based on the TSD length (3-5, >15, 0 bp). Those with 3-5 bp TSDs may also target dif-like sites but targets were not found for the other groups.


Assuntos
Aminoácidos , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Sítios de Ligação , Domínios Proteicos , Transposases/genética
16.
Microbiol Spectr ; 11(1): e0363122, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36651782

RESUMO

The type of capsular polysaccharide (CPS) on the cell surface of Acinetobacter baumannii can determine the specificity of lytic bacteriophage under consideration for therapeutic use. Here, we report the isolation of a phage on an extensively antibiotic resistant ST2 A. baumannii isolate AB5001 that carries the KL3 CPS biosynthesis gene cluster predicting a K3-type CPS. As the phage did not infect isolates carrying KL3 or KL22 and known to produce K3 CPS, the structure of the CPS isolated from A. baumannii AB5001 was determined. AB5001 produced a variant CPS form, K3-v1, that lacks the ß-d-GlсpNAc side chain attached to the d-Galp residue in the K3 structure. Inspection of the KL3 sequence in the genomes of AB5001 and other phage-susceptible isolates with a KL3 locus revealed single-base deletions in gtr6, causing loss of the Gtr6 glycosyltransferase that adds the missing d-GlсpNAc side chain to the K3 CPS. Hence, the presence of this sugar profoundly restricts the ability of the phage to digest the CPS. The 41-kb linear double-stranded DNA (dsDNA) phage genome was identical to the genome of a phage isolated on a K37-producing isolate and thus was named APK37.1. APK37.1 also infected isolates carrying KL116. Consistent with this, K3-v1 resembles the K37 and K116 structures. APK37.1 is a Friunavirus belonging to the Autographiviridae family. The phage-encoded tail spike depolymerase DpoAPK37.1 was not closely related to Dpo encoded by other sequenced Friunaviruses, including APK37 and APK116. IMPORTANCE Lytic bacteriophage have potential for the treatment of otherwise untreatable extensively antibiotic-resistant bacteria. For Acinetobacter baumannii, most phage exhibit specificity for the type of capsular polysaccharide (CPS) produced on the cell surface. However, resistance can arise via mutations in CPS genes that abolish this phage receptor. Here, we show that single-base deletions in a CPS gene result in alteration of the final structure rather than deletion of the capsule layer and hence affect the ability of a newly reported podophage to infect strains producing the K3 CPS.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/metabolismo , Açúcares/metabolismo , Polissacarídeos Bacterianos/genética , Myoviridae , Bacteriófagos/genética , Bacteriófagos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Cápsulas Bacterianas/metabolismo
17.
Plasmid ; 125: 102668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36481310

RESUMO

The pseudo-compound transposon Tn4352B is unusual in that the translocatable unit (TU) consisting of one of the bounding IS26 copies and the central portion containing the aphA1a gene has been found to be readily lost in the Escherichia coli strains used as host. Rapid loss required the presence of an additional 2 G residues adjacent to the internal end of one of the IS26 that flank the central portion and an active Tnp26 transposase. However, Tn4352B was found to be stable in wild-type Klebsiella pneumoniae strains. Though it was concluded that the difference may be due to the species background, the E. coli strains used were recombination-deficient. Here, we have further investigated the requirements for TU loss in E. coli and found that Tn4352B was stable in recombination-proficient strains. Among several recombination-deficient strains examined, rapid loss occurred only in strains that carry the recA1 allele but not in strains carrying different recA alleles, recA13 and a novel recA allele identified here, that also render the strain deficient in homologous recombination. Hence, it appears that a specific property of the RecA1 protein underlies the observed TU loss from Tn4352B.


Assuntos
Escherichia coli , Plasmídeos/genética , Escherichia coli/genética , Alelos
18.
Microbiol Spectr ; 11(1): e0247822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472426

RESUMO

Plasmids found in Acinetobacter species contribute to the spread of antibiotic resistance genes. They appear to be largely confined to this genus and cannot be typed with available tools and databases. Here, a method for distinguishing and typing these plasmids was developed using a curated, non-redundant set of 621 complete sequences of plasmids from Acinetobacter baumannii. Plasmids were separated into 3 groups based on the Pfam domains of the encoded replication initiation (Rep) protein and a fourth group that lack an identifiable Rep protein. The rep genes of each Rep-encoding group (n = 13 Rep_1, n = 107 RepPriCT_1, n = 351 Rep_3) were then clustered using a threshold of >95% nucleotide identity to define 80 distinct types. Five Rep_1 subgroups, designated R1_T1 to R1-T5, were identified and a sixth reported recently was added. Each R1 type corresponded to a conserved small plasmid sequence. The RepPriCT_1 plasmids fell into 5 subgroups, designated RP-T1 to RP-T5 and the Rep_3 plasmids comprised 69 distinct types (R3-T1 to R3-T69). Three R1, 2 RP and 32 R3 types are represented by only a single plasmid. Over half of the plasmids belong to the 4 most abundant types: the RP-T1 plasmids (n = 97), which include conjugation genes and are often associated with various acquired antibiotic resistance genes, and R3-T1, R3-T2 and R3-T3 (n = 95, 30 and 45, respectively). To facilitate typing and the identification of plasmids in draft genomes using this framework, we established the Acinetobacter Typing database containing representative nucleotide and protein sequences of the type markers (https://github.com/MehradHamidian/AcinetobacterPlasmidTyping). IMPORTANCE Though they contribute to the dissemination of genes that confer resistance to clinically important carbapenem and aminoglycoside antibiotics used to treat life-threatening Acinetobacter baumannii infections, plasmids found in Acinetobacter species have not been well studied. As these plasmids do not resemble those found in other Gram-negative pathogens, available typing systems are unsuitable. The plasmid typing system developed for A. baumannii plasmids with an identifiable rep gene will facilitate the classification and tracking of sequenced plasmids. It will also enable the detection of plasmid-derived contigs present in draft genomes that are widely ignored currently. Hence, it will assist in the tracking of resistance genes and other genes that affect survival in the environment, as they spread through the population. As identical or similar plasmids have been found in other Acinetobacter species, the typing system will also be broadly applicable in identifying plasmids in other members of the genus.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Plasmídeos/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Nucleotídeos/metabolismo , beta-Lactamases/genética
19.
Plasmid ; 123-124: 102654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36372255

RESUMO

Though IncC and IncA plasmids are compatible, they exert high level exclusion on one another. Here, the question of whether the presence of an SGI1 family element in the donor can overcome the exclusion of an IncC plasmid exerted by an IncC or IncA plasmid in the recipient was investigated. The transfer of the integrative mobilizable element SGI1 and its many variant forms into a new host is dependent on transfer machinery supplied by IncC or IncA plasmids. SGI1 elements include the determinants of a mobilization system and three genes that encode homologues of transfer proteins including TraG. Exclusion of a complete IncC plasmid by a complete IncA or IncC plasmid in the recipient was not ameliorated by an SGI1 element in the donor. However, transfer of the SGI was unaffected indicating that a functional mating apparatus was formed. The presence of only the plasmid-derived eexC or eexA gene in the recipient exerted high level exclusion on an incoming IncC plasmid and this was overcome by an SGI1 variant in the donor. Hence, the SGI affects only entry exclusion and additional plasmid features must influence other routes to plasmid exclusion.


Assuntos
Ilhas Genômicas , Plasmídeos/genética
20.
Microb Genom ; 8(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214673

RESUMO

Several novel non-antibiotic therapeutics for the critical priority bacterial pathogen, Acinetobacter baumannii, rely on specificity to the cell-surface capsular polysaccharide (CPS). Hence, prediction of CPS type deduced from genes in whole genome sequence data underpins the development and application of these therapies. In this study, we provide a comprehensive update to the A. baumannii K locus reference sequence database for CPS typing (available in Kaptive v. 2.0.1) to include 145 new KL, providing a total of 237 KL reference sequences. The database was also reconfigured for compatibility with the updated Kaptive v. 2.0.0 code that enables prediction of 'K type' from special logic parameters defined by detected combinations of KL and additional genes outside the K locus. Validation of the database against 8994 publicly available A. baumannii genome assemblies from NCBI databases identified the specific KL in 73.45 % of genomes with perfect, very high or high confidence. Poor sequence quality or the presence of insertion sequences were the main reasons for lower confidence levels. Overall, 17 KL were overrepresented in available genomes, with KL2 the most common followed by the related KL3 and KL22. Substantial variation in gene content of the central portion of the K locus, that usually includes genes specific to the CPS type, included 34 distinct groups of genes for synthesis of various complex sugars and >400 genes for forming linkages between sugars or adding non-sugar substituents. A repertoire of 681 gene types were found across the 237 KL, with 88.4 % found in <5 % of KL.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Cápsulas Bacterianas/genética , Elementos de DNA Transponíveis , Família Multigênica , Polissacarídeos Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...