Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9317, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291159

RESUMO

Communication theory suggests that interactive dialog rather than information transmission is necessary for climate change action, especially for complex systems like agriculture. Climate analogs-locations whose current climate is similar to a target location's future climate-have garnered recent interest as transmitting more relatable information; however, they have unexplored potential in facilitating meaningful dialogs, and whether the way the analogs are developed could make a difference. We developed climate context-specific analogs based on agriculturally-relevant climate metrics for US specialty crop production, and explored their potential for facilitating dialogs on climate adaptation options. Over 80% of US specialty crop counties had acceptable US analogs for the mid-twenty-first century, especially in the West and Northeast which had greater similarities in the crops produced across target-analog pairs. Western counties generally had analogs to the south, and those in other regions had them to the west. A pilot dialog of target-analog pairs showed promise in eliciting actionable adaptation insights, indicating potential value in incorporating analog-driven dialogs more broadly in climate change communication.


Assuntos
Agricultura , Mudança Climática , Produção Agrícola , Adaptação Fisiológica , Aclimatação
2.
Nat Commun ; 8: 14196, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139649

RESUMO

Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas.

3.
Glob Chang Biol ; 23(7): 2743-2754, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27976449

RESUMO

Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water-limited ecosystems.


Assuntos
Mudança Climática , Secas , Ecologia , Ecossistema , Chuva , Solo/química , Água
4.
PLoS One ; 7(12): e52604, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300719

RESUMO

Landscape connectivity is crucial for many ecological processes, including dispersal, gene flow, demographic rescue, and movement in response to climate change. As a result, governmental and non-governmental organizations are focusing efforts to map and conserve areas that facilitate movement to maintain population connectivity and promote climate adaptation. In contrast, little focus has been placed on identifying barriers-landscape features which impede movement between ecologically important areas-where restoration could most improve connectivity. Yet knowing where barriers most strongly reduce connectivity can complement traditional analyses aimed at mapping best movement routes. We introduce a novel method to detect important barriers and provide example applications. Our method uses GIS neighborhood analyses in conjunction with effective distance analyses to detect barriers that, if removed, would significantly improve connectivity. Applicable in least-cost, circuit-theoretic, and simulation modeling frameworks, the method detects both complete (impermeable) barriers and those that impede but do not completely block movement. Barrier mapping complements corridor mapping by broadening the range of connectivity conservation alternatives available to practitioners. The method can help practitioners move beyond maintaining currently important areas to restoring and enhancing connectivity through active barrier removal. It can inform decisions on trade-offs between restoration and protection; for example, purchasing an intact corridor may be substantially more costly than restoring a barrier that blocks an alternative corridor. And it extends the concept of centrality to barriers, highlighting areas that most diminish connectivity across broad networks. Identifying which modeled barriers have the greatest impact can also help prioritize error checking of land cover data and collection of field data to improve connectivity maps. Barrier detection provides a different way to view the landscape, broadening thinking about connectivity and fragmentation while increasing conservation options.


Assuntos
Conservação dos Recursos Naturais/métodos , Distribuição Animal , Animais , Mudança Climática , Ecossistema , Fluxo Gênico , Genética Populacional , Sistemas de Informação Geográfica , Mapeamento Geográfico , Humanos , Modelos Teóricos , Washington
5.
PLoS One ; 6(12): e28788, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174897

RESUMO

Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Mudança Climática/economia , Conservação dos Recursos Naturais/economia , Geografia , Noroeste dos Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...