Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Xenobiotica ; 39(11): 850-61, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19845436

RESUMO

GDC-0449 (2-chloro-N-(4-chloro-3-(pyridin-2-yl)phenyl)-4-(methylsulfonyl)benzamide) is a potent, selective Hedgehog (Hh) signalling pathway inhibitor being developed for the treatment of various cancers. The in vivo clearance of GDC-0449 was estimated to be 23.0, 4.65, 0.338, and 19.3 ml min(-1) kg(-1) in mouse, rat, dog and monkeys, respectively. The volume of distribution ranged from 0.490 in rats to 1.68 l kg(-1) in mice. Oral bioavailability ranged from 13% in monkeys to 53% in dogs. Predicted human clearance using allometry was 0.096-0.649 ml min(-1) kg(-1) and the predicted volume of distribution was 0.766 l kg(-1). Protein binding was extensive with an unbound fraction less than or equal to 6%, and the blood-to-plasma partition ratio ranged from 0.6 to 0.8 in all species tested. GDC-0449 was metabolically stable in mouse, rat, dog and human hepatocytes and had a more rapid turnover in monkey hepatocytes. Proposed metabolites from exploratory metabolite identification in vitro (rat, dog and human liver microsomes) and in vivo (dog and rat urine) include three primary oxidative metabolites (M1-M3) and three sequential glucuronides (M4-M6). Oxidative metabolites identified in microsomes M1 and M3 were formed primarily by P4503A4/5 (M1) and P4502C9 (M3). GDC-0449 was not a potent inhibitor of P4501A2, P4502B6, P4502D6, and P4503A4/5 with IC50 estimates greater than 20 microM. K(i)'s estimated for P4502C8, P4502C9 and P4502C19 and were 6.0, 5.4 and 24 microM, respectively. An evaluation with Simcyp suggests that GDC-0449 has a low potential of inhibiting P4502C8 and P4502C9. Furthermore, GDC-0449 (15 microM) was not a potent P-glycoprotein/ABCB1 inhibitor in MDR1-MDCK cells. Overall, GDC-0449 has an attractive preclinical profile and is currently in Phase II clinical trials.


Assuntos
Anilidas/farmacocinética , Antineoplásicos/farmacocinética , Proteínas Hedgehog/antagonistas & inibidores , Microssomos Hepáticos/metabolismo , Piridinas/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Injeções Intravenosas , Macaca fascicularis , Taxa de Depuração Metabólica , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Coelhos , Ratos , Ratos Sprague-Dawley
2.
Drug Metab Dispos ; 27(12): 1456-65, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10570027

RESUMO

In rats and mice, 1-nitronaphthalene (1-NN) produces both lung and liver toxicity. Even though these toxicities have been reported, the metabolism and disposition of 1-NN have not been elucidated. Therefore, studies were performed to characterize its fate after i.p. and i.v. administration to male Sprague-Dawley rats. After i.p. administration of [(14)C]1-NN (100 mg/kg; 60 microCi/kg), 84% of the dose was eliminated in the urine and feces by 48 h. At 96 h, 60% of the dose was recovered in the urine, 32% in the feces, and 1% collectively in the tissues, blood, and gastrointestinal contents. The terminal phase rate constant (k(term)) of 1-NN was 0.21 h(-1), the terminal phase half-life (T(1/2,term)) was 3.40 h, and the systemic bioavailability was 0.67. When administered i.v. (10 mg/kg; 120 microCi/kg), 85% of the dose was eliminated in the urine and feces by 24 h. At the end of the study (96 h), 56% of the dose was recovered in the urine, 36% in the feces, and 1% collectively in the tissues, blood, and gastrointestinal contents. Interestingly, 88% of the dose was secreted into bile by 8 h. The k(term) was 0.94 h(-1) and the T(1/2,term) was 0.77 h. The major urinary metabolite after both routes of administration was N-acetyl-S-(hydroxy-1-nitro-dihydronaphthalene)-L-cysteine. Other urinary metabolites identified include hydroxylated, dihydroxylated, glucuronidated, sulfated, and reduced metabolites, as well as dihydrodiol. The major biliary metabolite was hydroxy-glutathionyl-1-nitro-dihydronaphthalene. These data show that 1-NN undergoes extensive metabolism and enterohepatic recirculation, and the majority of the dose is eliminated in the urine.


Assuntos
Carcinógenos/metabolismo , Naftalenos/metabolismo , Animais , Bile/metabolismo , Sistema Biliar/metabolismo , Radioisótopos de Carbono , Carcinógenos/farmacocinética , Injeções Intraperitoneais , Injeções Intravenosas , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Taxa de Depuração Metabólica , Naftalenos/farmacocinética , Naftalenos/urina , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...