Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Diabetes Sci Technol ; : 19322968241267768, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129243

RESUMO

Today, continuous glucose monitoring (CGM) is a standard diagnostic option for patients with diabetes, at least for those with type 1 diabetes and those with type 2 diabetes on insulin therapy, according to international guidelines. The switch from spot capillary blood glucose measurement to CGM was driven by the extensive and immediate support and facilitation of diabetes management CGM offers. In patients not using insulin, the benefits of CGM are not so well studied/obvious. In such patients, factors like well-being and biofeedback are driving CGM uptake and outcome. Apps can combine CGM data with data about physical activity and meal consumption for therapy adjustments. Personalized data management and coaching is also more feasible with CGM data. The same holds true for digitalization and telemedicine intervention ("virtual diabetes clinic"). Combining CGM data with Smart Pens ("patient decision support") helps to avoid missing insulin boluses or insulin miscalculation. Continuous glucose monitoring is a major pillar of all automated insulin delivery systems, which helps substantially to avoid acute complications and achieve more time in the glycemic target range. These options were discussed by a group of German experts to identify concrete gaps in the care structure, with a view to the necessary structural adjustments of the health care system.

2.
Artigo em Inglês | MEDLINE | ID: mdl-27837238

RESUMO

While color vision and spatial resolution have been studied in many bird species, less is known about the temporal aspects of bird vision. High temporal resolution has been described in three species of passerines but it is unknown whether this is specific to passerines, to small actively flying birds, to insectivores or to birds living in bright habitats. Temporal resolution of vision is commonly tested by determining the flicker fusion frequency (FFF), at which the eye can no longer distinguish a flickering light from a constant light of equal intensity at different luminances. Using a food reward, we trained the birds to discriminate a constant light from a flickering light, at four different luminances between 750 and 7500 cd/m2. The highest FFF found in one bird at 3500 cd/m2 was 93 Hz. Three birds had higher FFF (82 Hz) at 7500 cd/m2 than at 3500 cd/m2. Six human subjects had lower FFF than the birds at 1500 but similar FFF at 750 cd/m2. These results indicate that high temporal resolution is not a common trait for all small and active birds living in bright light habitats. Whether it is typical for passerines or for insectivorous birds remains to be tested.


Assuntos
Melopsittacus/fisiologia , Visão Ocular/fisiologia , Adulto , Idoso , Animais , Condicionamento Operante , Discriminação Psicológica/fisiologia , Feminino , Alimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Psicofísica , Recompensa
3.
Vision Res ; 102: 19-25, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25072853

RESUMO

Birds are generally thought to have excellent vision with high spatial resolution. However, spatial contrast sensitivity of birds for stationary targets is low compared to other animals with similar acuity, such as mammals. For fast flying animals body stability and coordination are highly important, and visual motion cues are known to be relevant for flight control. We have tested five budgerigars (Melopsittacus undulatus) in behavioural discrimination experiments to determine whether or not stimulus motion improves contrast sensitivity. The birds were trained to distinguish between a homogenous grey field and sine-wave gratings of spatial frequencies between 0.48 and 6.5 cyc/deg, and Michelson contrasts between 0.7% and 99%. The gratings were either stationary or drifting with velocities between 0.9 and 13 deg/s. Budgerigars were able to discriminate patterns of lower contrast from grey when the gratings were drifting, and the improvement in sensitivity was strongest at lower spatial frequencies and higher drift velocities. Our findings indicate that motion cues can have positive effects on visual perception of birds. This is similar to earlier results on human vision. Contrast sensitivity, tested solely with stationary stimuli, underestimates the sensory capacity of budgerigars flying through their natural environments.


Assuntos
Sensibilidades de Contraste/fisiologia , Melopsittacus/fisiologia , Percepção de Movimento/fisiologia , Percepção Espacial/fisiologia , Análise de Variância , Animais , Feminino , Masculino , Estimulação Luminosa/métodos , Limiar Sensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA