Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 34(4): e2970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602711

RESUMO

Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three-city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban-rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree-planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.


Assuntos
Mudança Climática , Árvores , Urbanização , Árvores/crescimento & desenvolvimento , Acer/crescimento & desenvolvimento , Acer/fisiologia , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Florestas , Cidades
2.
Ecol Appl ; 31(5): e02336, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33783049

RESUMO

As urbanization increases worldwide, investments in nature-based solutions that aim to mitigate urban stressors and counter the impacts of global climate change are also on the rise. Tree planting on degraded urban lands-or afforestation-is one form of nature-based solution that has been increasingly implemented in cities around the world. The benefits of afforestation are, however, contingent on the capacity of soils to support the growth of planted trees, which poses a challenge in some urban settings where unfavorable soil conditions limit tree performance. Soil-focused site treatments could help urban areas overcome impediments to afforestation, yet few studies have examined the long-term (>5 yr) effects of site treatments on soils and other management objectives. We analyzed the impacts of compost amendments, interplanting with shrubs, and tree species composition (six species vs. two species) on soil conditions and associated tree growth in 54 experimental afforestation plots in New York City, USA. We compared baseline soil conditions to conditions after 6 yr and examined changes in the treatment effects from 1 to 6 yr. Site treatments and tree planting increased soil microbial biomass, water holding capacity, and total carbon and nitrogen, and reduced soil pH and bulk density relative to baseline conditions. These changes were most pronounced in compost-amended plots, and the effects of the shrub and species composition treatments were minimal. In fact, compost was key to sustaining long-term changes in soil carbon stocks, which increased by 17% in compost-amended plots but declined in unamended plots. Plots amended with compost also had 59% more nitrogen than unamended plots, which was associated with a 20% increase in the basal area of planted trees. Improvements in soil conditions after 6 yr departed from the initial trends observed after 1 yr, highlighting the importance of longer-term studies to quantify restoration success. Altogether, our results show that site treatments and tree planting can have long-lasting impacts on soil conditions and that these changes can support multiple urban land management objectives.


Assuntos
Florestas , Solo , Carbono , Sequestro de Carbono , Árvores
3.
Physiol Plant ; 172(3): 1535-1549, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33496962

RESUMO

Urban forest patches can provide critical ecosystem services and their ability to regenerate native tree species is critical to their sustainability. Little is known about native tree seedling establishment and physiological function in urban ecosystems. This growth chamber study examined the effects of urban soil and air temperatures on white oak (Quercus alba L.) germination, seedling growth, and leaf-level physiology. A split-plot design tested effects of field collected soils from urban and reference forest sites in Baltimore, Maryland, and warm (urban) versus cool (rural) growth chamber temperature regimes. Seedlings were harvested at the end of the 23-week experiment to assess foliar chemistry and biomass allocation. Seed germination was unaffected by treatments and was high in both soil types and temperature regimes. Urban soils supported significantly higher total seedling biomass and had a significant effect on leaf-level physiological parameters, with seedlings grown in urban soils having greater Anet , Vcmax , ETRmax , Jmax , PNUE, gs , Anet /Rd , and PIabs (an integrated chlorophyll fluorescence parameter). PIabs measurements taken throughout the experiment revealed a significant time × temperature interaction effect. Baltimore urban forest patch soils were higher in nutrients than reference soils, but also higher in heavy metals. Despite higher levels of heavy metals, these results demonstrate that urban forest patch soils are able to support robust white oak seedling growth and enhanced seedling physiological parameters. However, interactions with temperature suggest that warming air temperatures may cause seedling stress and reduced growth.


Assuntos
Quercus , Biomassa , Ecossistema , Fluorescência , Fotossíntese , Plântula , Solo , Temperatura , Árvores
4.
Tree Physiol ; 41(2): 269-279, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33313756

RESUMO

The provisioning of critical ecosystem services to cities of the eastern USA depends on the health and physiological function of trees in urban areas. Although we know that the urban environment may be stressful for trees planted in highly developed areas, it is not clear that trees in urban forest patches experience the same stressful environmental impacts. In this study, we examine chlorophyll fluorescence parameters, leaf traits, foliar nutrients and stable isotope signatures of urban forest patch trees compared with trees growing at reference forest sites, in order to characterize physiological response of these native tree species to the urban environment of three major cities arranged along a latitudinal gradient (New York, NY; Philadelphia, PA; Baltimore, MD). Overall, white oaks (Quercus alba L.) show more differences in chlorophyll fluorescence parameters and leaf traits by city and site type (urban vs reference) than red maples (Acer rubrum L.). The exceptions were δ13C and δ15N, which did not vary in white oak foliage but were significantly depleted (δ13C) and enriched (δ15N) in urban red maple foliage. Across all sites, red maples had higher thermal tolerance of photosynthesis (Tcrit) than white oaks, suggesting a greater ability to withstand temperature stress from the urban heat island effect and climate change. However, the highest average values of Tcrit were found in the Baltimore urban white oaks, suggesting that species suitability and response to the urban environment varies across a latitudinal gradient. Stomatal pore index (SPI) showed inter-specific differences, with red maple SPI being higher in urban trees, whereas white oak SPI was lower in urban trees. These results demonstrate that differences in native tree physiology occur between urban and reference forest patches, but they are site- and species-specific. Data on local site characteristics and tree species performance over time remain necessary to gain insight about urban woodland ecosystem function.


Assuntos
Acer , Quercus , Clorofila , Cidades , Ecossistema , Fluorescência , Florestas , Temperatura Alta , New York , Folhas de Planta , Árvores
5.
Ecol Appl ; 31(2): e02255, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159425

RESUMO

Urban forested natural areas are valuable ecological and social resources, but long-term sustainability of these habitats is challenged by environmental and social factors associated with urban ecosystems. Advances in city-scale assessments of urban forests have increased the resolution of forest community types and conditions, allowing for improved understanding of ecological function, such as natural regeneration, in these urban habitats. By applying metrics of tree regeneration that are commonly used for the management of rural forests, urban ecologists can test the potential for traditional forest management strategies within our cities. In this study, we compare urban and rural oak-hickory forest composition and structure and the capacity for natural regeneration in the New York metropolitan area. Specifically, we use two metrics of advance regeneration that describe the abundance of seedlings and saplings at different size classes to test whether this management for natural regeneration is a viable option. We found differences in recruitment dynamics between urban and rural forests that have implications for the sustainability of these forests and new management strategies. First, after controlling for forest community type, species composition in urban and rural sites was significantly different across multiple strata and within the seed bank. Species-specific capacity for natural regeneration was different in urban and rural sites, signaling the possibility of divergent successional trajectories. Second, while differences in species composition exist, both urban and rural sites were dominated by native species across all forest strata except for urban seed banks. Third, despite finding significantly lower average annual seedling abundance in urban (1.9 seedlings/m2 ) compared to rural (7.1 seedlings/m2 ) sites, we observed greater density of saplings in urban forests, and no significant difference in stocking index between sites. These findings suggest that early-establishment barriers to recruitment are greater in urban forest sites. However, once established, seedling transition into advance regeneration stages may not be different between site types, and advance regeneration may, in some cases, be more viable in urban forested natural areas. These results highlight functional differences between urban and rural forest recruitment dynamics that may impact on the future community composition of oak-hickory forests in the two landscape settings.


Assuntos
Ecossistema , Florestas , Cidades , New York , Árvores
6.
Ecol Appl ; 29(1): e01819, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521096

RESUMO

Cities are increasingly focused on expanding tree canopy cover as a means to improve the urban environment by, for example, reducing heat island effects, promoting better air quality, and protecting local habitat. The majority of efforts to expand canopy cover focus on planting street trees or on planting native tree species and removing nonnatives in natural areas through reforestation. Yet many urban canopy assessments conducted at the city-scale reveal co-dominance by nonnative trees, fueling debates about the value of urban forests and native-specific management targets. In contrast, assessments within cities at site or park scales find that some urban forest stands harbor predominantly native biodiversity. To resolve this apparent dichotomy in findings, about the extent to which urban forests are native dominated, between the city-scale canopy and site-level assessments, we measure forest structure and composition in 1,124 plots across 53 parks in New York City's 2,497 ha of natural area forest. That is, we assess urban forests at the city-scale and deliberately omit sampling trees existing outside of forest stands but which are enumerated in citywide canopy assessments. We find that on average forest stand canopy is comprised of 82% native species in New York City forests, suggesting that conclusions that the urban canopy is co-dominated by nonnatives likely results from predominantly sampling street trees in prior city-scale assessments. However, native tree species' proportion declines to 75% and 53% in the midstory and understory, respectively, suggesting potential threats to the future native dominance of urban forest canopies. Furthermore, we find that out of 57 unique forest types in New York City, the majority of stands (81%) are a native type. We find that stand structure in urban forest stands is more similar to rural forests in New York State than to stand structure reported for prior assessments of the urban canopy at the city scale. Our results suggest the need to measure urban forest stands apart from the entire urban canopy. Doing so will ensure that city-scale assessments return data that align with conservation policy and management strategies that focus on maintaining and growing native urban forests rather than individual trees.


Assuntos
Florestas , Árvores , Cidades , Ecossistema , Cidade de Nova Iorque
7.
Ecol Appl ; 19(6): 1454-66, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19769094

RESUMO

Sugar maple, Acer saccharum, decline disease is incited by multiple disturbance factors when imbalanced calcium (Ca), magnesium (Mg), and manganese (Mn) act as predisposing stressors. Our objective in this study was to determine whether factors affecting sugar maple health also affect growth as estimated by basal area increment (BAI). We used 76 northern hardwood stands in northern Pennsylvania, New York, Vermont, and New Hampshire, USA, and found that sugar maple growth was positively related to foliar concentrations of Ca and Mg and stand level estimates of sugar maple crown health during a high stress period from 1987 to 1996. Foliar nutrient threshold values for Ca, Mg, and Mn were used to analyze long-term BAI trends from 1937 to 1996. Significant (P < or = 0.05) nutrient threshold-by-time interactions indicate changing growth in relation to nutrition during this period. Healthy sugar maples sampled in the 1990s had decreased growth in the 1970s, 10-20 years in advance of the 1980s and 1990s decline episode in Pennsylvania. Even apparently healthy stands that had no defoliation, but had below-threshold amounts of Ca or Mg and above-threshold Mn (from foliage samples taken in the mid 1990s), had decreasing growth by the 1970s. Co-occurring black cherry, Prunus serotina, in a subset of the Pennsylvania and New York stands, showed opposite growth responses with greater growth in stands with below-threshold Ca and Mg compared with above-threshold stands. Sugar maple growing on sites with the highest concentrations of foliar Ca and Mg show a general increase in growth from 1937 to 1996 while other stands with lower Ca and Mg concentrations show a stable or decreasing growth trend. We conclude that acid deposition induced changes in soil nutrient status that crossed a threshold necessary to sustain sugar maple growth during the 1970s on some sites. While nutrition of these elements has not been considered in forest management decisions, our research shows species specific responses to Ca and Mg that may reduce health and growth of sugar maple or change species composition, if not addressed.


Assuntos
Acer/crescimento & desenvolvimento , Solo/análise , Estresse Fisiológico , Acer/metabolismo , Clima , Geografia , Mid-Atlantic Region , New England , Folhas de Planta/metabolismo , Prunus/crescimento & desenvolvimento , Prunus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...