Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 6(11): 14631-14640, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30416892

RESUMO

In the current study, platinum-present as a negligible component (below 1 ppb, the detection limit of the HR-ICP-MS at the dilutions used) in real industrial hydrometallurgical process solutions-was recovered by an electrodeposition-redox replacement (EDRR) method on pyrolyzed carbon (PyC) electrode, a method not earlier applied to metal recovery. The recovery parameters of the EDRR process were initially investigated using a synthetic nickel electrolyte solution ([Ni] = 60 g/L, [Ag] = 10 ppm, [Pt] = 20 ppm, [H2SO4] = 10 g/L), and the results demonstrated an extraordinary increase of 3 × 105 in the [Pt]/[Ni] on the electrode surface cf. synthetic solution. EDRR recovery of platinum on PyC was also tested with two real industrial process solutions that contained a complex multimetal solution matrix: Ni as the major component (>140 g/L) and very low contents of Pt, Pd, and Ag (i.e., <1 ppb, 117 and 4 ppb, respectively). The selectivity of Pt recovery by EDRR on the PyC electrode was found to be significant-nanoparticles deposited on the electrode surface comprised on average of 90 wt % platinum and a [Pt]/[Ni] enrichment ratio of 1011 compared to the industrial hydrometallurgical solution. Furthermore, other precious metallic elements like Pd and Ag could also be enriched on the PyC electrode surface using the same methodology. This paper demonstrates a remarkable advancement in the recovery of trace amounts of platinum from real industrial solutions that are not currently considered as a source of Pt metal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...