Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5029, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866733

RESUMO

Relativistic electron-positron plasmas are ubiquitous in extreme astrophysical environments such as black-hole and neutron-star magnetospheres, where accretion-powered jets and pulsar winds are expected to be enriched with electron-positron pairs. Their role in the dynamics of such environments is in many cases believed to be fundamental, but their behavior differs significantly from typical electron-ion plasmas due to the matter-antimatter symmetry of the charged components. So far, our experimental inability to produce large yields of positrons in quasi-neutral beams has restricted the understanding of electron-positron pair plasmas to simple numerical and analytical studies, which are rather limited. We present the first experimental results confirming the generation of high-density, quasi-neutral, relativistic electron-positron pair beams using the 440 GeV/c beam at CERN's Super Proton Synchrotron (SPS) accelerator. Monte Carlo simulations agree well with the experimental data and show that the characteristic scales necessary for collective plasma behavior, such as the Debye length and the collisionless skin depth, are exceeded by the measured size of the produced pair beams. Our work opens up the possibility of directly probing the microphysics of pair plasmas beyond quasi-linear evolution into regimes that are challenging to simulate or measure via astronomical observations.

2.
Phys Rev Lett ; 130(19): 195101, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243644

RESUMO

We present results from pulsed-power driven differentially rotating plasma experiments designed to simulate physics relevant to astrophysical disks and jets. In these experiments, angular momentum is injected by the ram pressure of the ablation flows from a wire array Z pinch. In contrast to previous liquid metal and plasma experiments, rotation is not driven by boundary forces. Axial pressure gradients launch a rotating plasma jet upward, which is confined by a combination of ram, thermal, and magnetic pressure of a surrounding plasma halo. The jet has subsonic rotation, with a maximum rotation velocity 23±3 km/s. The rotational velocity profile is quasi-Keplerian with a positive Rayleigh discriminant κ^{2}∝r^{-2.8±0.8} rad^{2}/s^{2}. The plasma completes 0.5-2 full rotations in the experimental time frame (∼150 ns).

3.
Phys Rev Lett ; 129(22): 225001, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36493430

RESUMO

We present a study of perpendicular subcritical shocks in a collisional laboratory plasma. Shocks are produced by placing obstacles into the supermagnetosonic outflow from an inverse wire array z pinch. We demonstrate the existence of subcritical shocks in this regime and find that secondary shocks form in the downstream. Detailed measurements of the subcritical shock structure confirm the absence of a hydrodynamic jump. We calculate the classical (Spitzer) resistive diffusion length and show that it is approximately equal to the shock width. We measure little heating across the shock (<10% of the ion kinetic energy) which is consistent with an absence of viscous dissipation.

4.
Rev Sci Instrum ; 92(3): 033521, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820051

RESUMO

We report on a recently developed laser-probing diagnostic, which allows direct measurements of ray-deflection angles in one axis while retaining imaging capabilities in the other axis. This allows us to measure the spectrum of angular deflections from a laser beam, which passes through a turbulent high-energy-density plasma. This spectrum contains information about the density fluctuations within the plasma, which deflect the probing laser over a range of angles. We create synthetic diagnostics using ray-tracing to compare this new diagnostic with standard shadowgraphy and schlieren imaging approaches, which demonstrates the enhanced sensitivity of this new diagnostic over standard techniques. We present experimental data from turbulence behind a reverse shock in a plasma and demonstrate that this technique can measure angular deflections between 0.06 and 34 mrad, corresponding to a dynamic range of over 500.

5.
Rev Sci Instrum ; 92(3): 033542, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819991

RESUMO

Optical collective Thomson scattering (TS) is used to diagnose magnetized high energy density physics experiments at the Magpie pulsed-power generator at Imperial College London. The system uses an amplified pulse from the second harmonic of a Nd:YAG laser (3 J, 8 ns, 532 nm) to probe a wide diversity of high-temperature plasma objects, with densities in the range of 1017-1019 cm-3 and temperatures between 10 eV and a few keV. The scattered light is collected from 100 µm-scale volumes within the plasmas, which are imaged onto optical fiber arrays. Multiple collection systems observe these volumes from different directions, providing simultaneous probing with different scattering K-vectors (and different associated α-parameters, typically in the range of 0.5-3), allowing independent measurements of separate velocity components of the bulk plasma flow. The fiber arrays are coupled to an imaging spectrometer with a gated intensified charge coupled device. The spectrometer is configured to view the ion-acoustic waves of the collective Thomson scattered spectrum. Fits to the spectra with the theoretical spectral density function S(K, ω) yield measurements of the local plasma temperatures and velocities. Fitting is constrained by independent measurements of the electron density from laser interferometry and the corresponding spectra for different scattering vectors. This TS diagnostic has been successfully implemented on a wide range of experiments, revealing temperature and flow velocity transitions across magnetized shocks, inside rotating plasma jets and imploding wire arrays, as well as providing direct measurements of drift velocities inside a magnetic reconnection current sheet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...