Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 180(4): 1075-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26662734

RESUMO

Plants can respond to climate change by either migrating, adapting to the new conditions or going extinct. Relict plant species of limited distribution can be especially vulnerable as they are usually composed of small and isolated populations, which may reduce their ability to cope with rapidly changing environmental conditions. The aim of this study was to assess the vulnerability of Cneorum tricoccon L. (Cneoraceae), a Mediterranean relict shrub of limited distribution, to a future drier climate. We evaluated population differentiation in functional traits related to drought tolerance across seven representative populations of the species' range. We measured morphological and physiological traits in both the field and the greenhouse under three water availability levels. Large phenotypic differences among populations were found under field conditions. All populations responded plastically to simulated drought, but they differed in mean trait values as well as in the slope of the phenotypic response. Particularly, dry-edge populations exhibited multiple functional traits that favored drought tolerance, such as more sclerophyllous leaves, strong stomatal control but high photosynthetic rates, which increases water use efficiency (iWUE), and an enhanced ability to accumulate sugars as osmolytes. Although drought decreased RGR in all populations, this reduction was smaller for populations from the dry edge. Our results suggest that dry-edge populations of this relict species are well adapted to drought, which could potentially mitigate the species' extinction risk under drier scenarios. Dry-edge populations not only have a great conservation value but can also change expectations from current species' distribution models.


Assuntos
Adaptação Fisiológica , Mudança Climática , Secas , Ecossistema , Magnoliopsida/fisiologia , Fenótipo , Água/fisiologia , Aclimatação , Metabolismo dos Carboidratos , Clima , Magnoliopsida/metabolismo , Região do Mediterrâneo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estresse Fisiológico
2.
New Phytol ; 205(3): 973-993, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25318596

RESUMO

Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation.


Assuntos
Aclimatação , Luz , Nitrogênio/metabolismo , Fenótipo , Fotossíntese , Folhas de Planta/fisiologia , Plantas , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas/metabolismo
3.
J Exp Bot ; 64(8): 2269-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23564954

RESUMO

Foliage photosynthetic and structural traits were studied in 15 species with a wide range of foliage anatomies to gain insight into the importance of key anatomical traits in the limitation of diffusion of CO2 from substomatal cavities to chloroplasts. The relative importance of different anatomical traits in constraining CO2 diffusion was evaluated using a quantitative model. Mesophyll conductance (g m) was most strongly correlated with chloroplast exposed surface to leaf area ratio (S c/S) and cell wall thickness (T cw), but, depending on foliage structure, the overall importance of g m in constraining photosynthesis and the importance of different anatomical traits in the restriction of CO2 diffusion varied. In species with mesophytic leaves, membrane permeabilities and cytosol and stromal conductance dominated the variation in g m. However, in species with sclerophytic leaves, g m was mostly limited by T cw. These results demonstrate the major role of anatomy in constraining mesophyll diffusion conductance and, consequently, in determining the variability in photosynthetic capacity among species.


Assuntos
Dióxido de Carbono/metabolismo , Células do Mesofilo/fisiologia , Folhas de Planta/anatomia & histologia , Cloroplastos/fisiologia , Difusão , Células do Mesofilo/metabolismo , Modelos Biológicos , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Estômatos de Plantas/fisiologia
4.
Tree Physiol ; 33(2): 202-10, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23185067

RESUMO

We investigated changes in chlorophyll a fluorescence from alternate leaf surfaces to assess the intraleaf light acclimation patterns in combination with natural variations in radiation, leaf angles, leaf mass per area (LMA), chlorophyll content (Chl) and leaf optical parameters. Measurements were conducted on bottom- and top-layer leaves of Tilia cordata Mill. (a shade-tolerant sub-canopy species, sampled at heights of 11 and 16 m) and Populus tremula L. (a light-demanding upper canopy species, sampled at canopy heights of 19 and 26 m). The upper canopy species P. tremula had a six times higher PSII quantum yield (Φ(II)) and ratio of open reaction centres (qP), and a two times higher LMA than T. cordata. These species-specific differences were also present when the leaves of both species were in similar light conditions. Leaf adaxial/abaxial fluorescence ratio was significantly larger in the case of more horizontal leaves. Populus tremula (more vertical leaves), had smaller differences in fluorescence parameters between alternate leaf sides compared with T. cordata (more horizontal leaves). However, optical properties on alternate leaf sides showed a larger difference for P. tremula. Intraspecifically, the measured optical parameters were better correlated with LMA than with leaf Chl. Species-specific differences in leaf anatomy appear to enhance the photosynthetic potential of leaf biochemistry by decreasing the interception of excess light in P. tremula and increasing the light absorptance in T. cordata. Our results indicate that intraleaf light absorption gradient, described here as leaf adaxial/abaxial side ratio of chlorophyll a fluorescence, varies significantly with changes in leaf light environment in a multi-layer multi-species tree canopy. However, this variation cannot be described merely as a simple function of radiation, leaf angle, Chl or LMA, and species-specific differences in light acclimation strategies should also be considered.


Assuntos
Clorofila/metabolismo , Luz , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Populus/fisiologia , Tilia/fisiologia , Aclimatação , Cloroplastos , Transporte de Elétrons , Fluorescência , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Populus/metabolismo , Populus/efeitos da radiação , Especificidade da Espécie , Tilia/metabolismo , Tilia/efeitos da radiação , Árvores
5.
New Phytol ; 184(1): 257-274, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19674334

RESUMO

Leaf-level determinants of species environmental stress tolerance are still poorly understood. Here, we explored dependencies of species shade (T(shade)) and drought (T(drought)) tolerance scores on key leaf structural and functional traits in 339 Northern Hemisphere temperate woody species. In general, T(shade) was positively associated with leaf life-span (L(L)), and negatively with leaf dry mass (M(A)), nitrogen content (N(A)), and photosynthetic capacity (A(A)) per area, while opposite relationships were observed with drought tolerance. Different trait combinations responsible for T(shade) and T(drought) were observed among the key plant functional types: deciduous and evergreen broadleaves and evergreen conifers. According to principal component analysis, resource-conserving species with low N content and photosynthetic capacity, and high L(L) and M(A), had higher T(drought), consistent with the general stress tolerance strategy, whereas variation in T(shade) did not concur with the postulated stress tolerance strategy. As drought and shade often interact in natural communities, reverse effects of foliar traits on these key environmental stress tolerances demonstrate that species niche differentiation is inherently constrained in temperate woody species. Different combinations of traits among key plant functional types further explain the contrasting bivariate correlations often observed in studies seeking functional explanation of variation in species environmental tolerances.


Assuntos
Adaptação Fisiológica , Secas , Ecossistema , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Biomassa , Bases de Dados como Assunto , Fotossíntese , Característica Quantitativa Herdável , Análise de Regressão , Especificidade da Espécie , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...