Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 6484, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300161

RESUMO

Spaceflight is a unique environment that includes at least two factors which can negatively impact skeletal health: microgravity and ionizing radiation. We have previously shown that a diet supplemented with dried plum powder (DP) prevented radiation-induced bone loss in mice. In this study, we investigated the capacity of the DP diet to prevent bone loss in mice following exposure to simulated spaceflight, combining microgravity (by hindlimb unloading) and radiation exposure. The DP diet was effective at preventing most decrements in bone micro-architectural and mechanical properties due to hindlimb unloading alone and simulated spaceflight. Furthermore, we show that the DP diet can protect osteoprogenitors from impairments resulting from simulated microgravity. Based on our findings, a dietary supplementation with DP could be an effective countermeasure against the skeletal deficits observed in astronauts during spaceflight.


Assuntos
Doenças Ósseas Metabólicas/prevenção & controle , Radiação Cósmica/efeitos adversos , Elevação dos Membros Posteriores/efeitos adversos , Prunus domestica , Voo Espacial , Animais , Densidade Óssea/fisiologia , Densidade Óssea/efeitos da radiação , Doenças Ósseas Metabólicas/diagnóstico , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/fisiopatologia , Modelos Animais de Doenças , Alimentos em Conserva , Elevação dos Membros Posteriores/fisiologia , Humanos , Masculino , Camundongos , Esqueleto/diagnóstico por imagem , Esqueleto/fisiopatologia , Esqueleto/efeitos da radiação , Microtomografia por Raio-X
2.
J Nutr Biochem ; 34: 73-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27239754

RESUMO

Nutrition is an important determinant of bone health and attainment of peak bone mass. Diets containing dried plum (DP) have been shown to increase bone volume and strength. These effects may be linked to the immune system and DP-specific polyphenols. To better understand these relationships, we studied DP in skeletally mature (6-month-old) and growing (1- and 2-month-old) C57Bl/6 male mice. In adult mice, DP rapidly (<2 weeks) increased bone volume (+32%) and trabecular thickness (+24%). These changes were associated with decreased osteoclast surface (Oc.S/BS) and decreased serum CTX, a marker of bone resorption. The reduction in Oc.S/BS was associated with a reduction in the osteoclast precursor pool. Osteoblast surface (Ob.S/BS) and bone formation rate were also decreased suggesting that the gain in bone in adult mice is a consequence of diminished bone resorption and formation, but resorption is reduced more than formation. The effects of DP on bone were accompanied by a decline in interleukins, TNF and MCP-1, suggesting that DP is acting in part through the immune system to suppress inflammatory activity and reduce the size of the osteoclast precursor pool. Feeding DP was accompanied by an increase in plasma phenolics, some of which have been shown to stimulate bone accrual. In growing and young adult mice DP at levels as low as 5% of diet (w/w) increased bone volume. At higher levels (DP 25%), bone volume was increased by as much as 94%. These data demonstrate that DP feeding dramatically increases peak bone mass during growth.


Assuntos
Desenvolvimento Ósseo , Reabsorção Óssea/prevenção & controle , Citocinas/antagonistas & inibidores , Alimentos em Conserva , Frutas , Alimento Funcional , Prunus domestica , Animais , Biomarcadores/sangue , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Remodelação Óssea , Reabsorção Óssea/imunologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/citologia , Osso e Ossos/imunologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Células Cultivadas , Colágeno Tipo I/sangue , Citocinas/sangue , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/imunologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/citologia , Osteoclastos/imunologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Fragmentos de Peptídeos/sangue , Peptídeos/sangue
3.
FASEB J ; 27(9): 3505-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23704087

RESUMO

The chemokine CXCL12 and its receptor CXCR4 play a key role in regulation of hematopoietic stem cells and cell migratory function during morphogenesis. Osteoblasts express both the ligand and the receptor, but little is known about the role of CXCL12-CXCR4 signaling in maintaining skeletal homeostasis. Using Cre-Lox technology to delete CXCR4 in mature osteoblasts in mice, we show here a significant decrease in bone mass and alterations in cancellous bone structure. CXCR4 gene ablation increased the number of colony-forming units (CFU), CFU-positive for alkaline phosphatase (CFU-AP(+)), and mineralizing nodules in bone marrow stromal cell (BMSC) cultures. The adipocyte precursor population decreased in BMSCs harvested from the KO animals. The nonadherent population of BMSCs harvested from the long bone diaphysis of KO animals formed more osteoclasts, a finding that was associated with increased circulatory levels of pyridinoline, a marker of bone resorption. Our data show that osteoblast-specific CXCR4 deletion has profound effects on the mesenchymal stem cell pool and allocation to the osteoblastic and adipocytic cell lineages. They also show that CXCL12/CXCR4 signaling in the mature osteoblast can feedback to regulate the osteoclast precursor pool size and play a multifunctional role in regulating bone formation and resorption.


Assuntos
Quimiocina CXCL12/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoclastos/citologia , Receptores CXCR4/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CXCL12/farmacologia , Genótipo , Imuno-Histoquímica , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Receptores CXCR4/genética , Microtomografia por Raio-X
4.
PLoS One ; 8(3): e60569, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555991

RESUMO

Interest in dried plum has increased over the past decade due to its promise in restoring bone and preventing bone loss in animal models of osteoporosis. This study compared the effects of dried plum on bone to other dried fruits and further explored the potential mechanisms of action through which dried plum may exert its osteoprotective effects. Adult osteopenic ovariectomized (OVX) C57BL/6 mice were fed either a control diet or a diet supplemented with 25% (w/w) dried plum, apple, apricot, grape or mango for 8 weeks. Whole body and spine bone mineral density improved in mice consuming the dried plum, apricot and grape diets compared to the OVX control mice, but dried plum was the only fruit to have an anabolic effect on trabecular bone in the vertebra and prevent bone loss in the tibia. Restoration of biomechanical properties occurred in conjunction with the changes in trabecular bone in the spine. Compared to other dried fruits in this study, dried plum was unique in its ability to down-regulate osteoclast differentiation coincident with up-regulating osteoblast and glutathione (GPx) activity. These alterations in bone metabolism and antioxidant status compared to other dried fruits provide insight into dried plum's unique effects on bone.


Assuntos
Densidade Óssea , Osso e Ossos/fisiopatologia , Frutas , Osteoporose Pós-Menopausa/dietoterapia , Osteoporose Pós-Menopausa/fisiopatologia , Prunus , Animais , Apoptose , Fenômenos Biomecânicos , Peso Corporal , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular , Dieta/métodos , Feminino , Frutas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Prunus/metabolismo
5.
Am J Physiol Endocrinol Metab ; 304(3): E282-93, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23211515

RESUMO

Glucocorticoids are extremely effective anti-inflammatory therapies, but their clinical use is limited due to severe side effects, including osteoporosis, muscle wasting, fat redistribution, and skin thinning. Here we use heavy water labeling and mass spectrometry to measure fluxes through metabolic pathways impacted by glucocorticoids. We combine these methods with measurements of body composition in corticotropin-releasing hormone (CRH)-transgenic (Tg)(+) mice that have chronically elevated, endogenously produced corticosterone and a phenotype that closely mimics Cushing's disease in humans. CRH-Tg(+) mice had increased adipose mass, adipose triglyceride synthesis, and greatly increased triglyceride/fatty acid cycling in subcutaneous and abdominal fat depots and increased de novo lipogenesis in the abdominal depot. In bone, CRH-Tg(+) mice had decreased bone mass, absolute collagen synthesis rates, and collagen breakdown rate. In skin, CRH-Tg(+) mice had decreased skin thickness and absolute collagen synthesis rates but no decrease in the collagen breakdown rate. In muscle, CRH-Tg(+) mice had decreased muscle mass and absolute protein synthesis but no decrease in the protein breakdown rate. We conclude that chronic exposure to endogenous glucocorticoid excess in mice is associated with ongoing decreases in bone collagen, skin collagen, and muscle protein synthesis without compensatory reduction (coupling) of breakdown rates in skin and muscle. Both of these actions contribute to reduced protein pool sizes. We also conclude that increased cycling between triglycerides and free fatty acids occurs in both abdominal and subcutaneous fat depots in CRH-Tg(+) mice. CRH-Tg mice have both increased lipolysis and increased triglyceride synthesis in adipose tissue.


Assuntos
Tecido Adiposo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hipersecreção Hipofisária de ACTH/metabolismo , Triglicerídeos/metabolismo , Adiposidade , Animais , Hormônio Liberador da Corticotropina/genética , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
Am J Physiol Endocrinol Metab ; 303(11): E1354-62, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23047986

RESUMO

Loss of skeletal weight bearing or skeletal unloading as occurs during spaceflight inhibits bone formation and stimulates bone resorption. These are associated with a decline in the osteoblast (Ob.S/BS) and an increase in the osteoclast (Oc.S/BS) bone surfaces. To determine the temporal relationship between changes in the bone cells and their marrow precursor pools during sustained unloading, and whether genetic background influences these relationships, we used the hindlimb unloading model to induce bone loss in two strains of mice known to respond to load and having significantly different cancellous bone volumes (C57BL/6 and DBA/2 male mice). Skeletal unloading caused a progressive decline in bone volume that was accompanied by strain-specific changes in Ob.S/BS and Oc.S/BS. These were associated with a sustained reduction in the osteoprogenitor population and a dramatic but transient increase in the osteoclast precursor pool size in both strains. The results reveal that bone adaptation to skeletal unloading involves similar rapid changes in the osteoblast and osteoclast progenitor populations in both strains of mice but striking differences in Oc.S/BS dynamics, BFR, and cancellous bone structure. These strain-specific differences suggest that genetics plays an important role in determining the osteoblast and osteoclast populations on the bone surface and the dynamics of bone loss in response to skeletal unloading.


Assuntos
Remodelação Óssea/fisiologia , Reabsorção Óssea/patologia , Osso e Ossos/citologia , Elevação dos Membros Posteriores/fisiologia , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Animais , Células da Medula Óssea/citologia , Reabsorção Óssea/fisiopatologia , Osso e Ossos/patologia , Diferenciação Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Voo Espacial , Simulação de Ambiente Espacial , Especificidade da Espécie , Células-Tronco/citologia
7.
J Bone Miner Res ; 26(12): 2948-58, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21932337

RESUMO

Integrin receptors bind extracellular matrix proteins, and this link between the cell membrane and the surrounding matrix may translate skeletal loading to biologic activity in osteoprogenitor cells. The interaction between integrin and growth factor receptors allows for mechanically induced regulation of growth factor signaling. Skeletal unloading leads to decreased bone formation and osteoblast proliferation that can be explained in part by a failure of insulin-like growth factor 1 (IGF-1) to activate its signaling pathways in unloaded bone. The aim of this study is to determine whether unloading-induced resistance is specific for IGF-1 or common to other skeletal growth factors, and to examine the regulatory role of integrins in IGF-1 signaling. Bone marrow osteoprogenitor (BMOp) cells were isolated from control or hindlimb suspended rats. Unloaded BMOp cells treated with IGF-1 failed to respond with increased proliferation, receptor phosphorylation, or signaling activation in the setting of intact ligand binding, whereas the platelet-derived growth factor (PDGF) response was fully intact. Pretreatment of control BMOp cells with an integrin inhibitor, echistatin, failed to disrupt PDGF signaling but blocked IGF-1 signaling. Recovery of IGF-1 signaling in unloaded BMOp cells followed the recovery of marked reduction in integrin expression induced by skeletal unloading. Selective targeting of integrin subunits with siRNA oligonucleotides revealed that integrin ß1 and ß3 are required for normal IGF-1 receptor phosphorylation. We conclude that integrins, in particular integrin ß3, are regulators of IGF-1, but not PDGF, signaling in osteoblasts, suggesting that PDGF could be considered for investigation in prevention and/or treatment of bone loss during immobilization and other forms of skeletal unloading.


Assuntos
Elevação dos Membros Posteriores , Fator de Crescimento Insulin-Like I/farmacologia , Integrina beta1/metabolismo , Integrina beta3/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Integrina beta1/genética , Integrina beta3/genética , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Masculino , Peptídeos/farmacologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1/metabolismo
8.
J Nutr ; 140(10): 1781-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20739449

RESUMO

Bone is progressively lost with advancing age. Therapies are limited and the only effective proanabolic regimen presently available to restore bone is intermittent treatment with teriparatide (parathyroid hormone 1-34). Recent evidence suggests that dietary supplementation with dried plum (DP) can prevent bone loss due to estrogen deficiency. To determine whether dietary DP supplementation can prevent the loss of bone with aging and whether bone that has already been lost can be restored, adult (6 mo) and old (18 mo) male mice were fed a normal diet or isoenergetic, isonitrogenous diets supplemented with DP (0, 15, and 25% DP by weight) for 6 mo. MicroCT analysis and bone histomorphometry were used to assess bone volume, structure, and metabolic activity before, during, and after dietary supplementation. Mice fed the 0% DP diet (control diet) lost bone, whereas both adult and old mice fed the 25% DP-supplemented diet gained bone. Adult but not old mice fed the 15% diet also gained bone. Cancellous bone volume in mice receiving 25% DP exceeded baseline levels by 40-50%. Trabecular structure varied with diet and age and responses in old mice were generally blunted. Trabecular, but not cortical, mineral density varied with age and measures of bone anabolic activity were lower in aged mice. Our findings suggest that DP contains proanabolic factors that can dramatically increase bone volume and restore bone that has already been lost due to aging. In turn, DP may provide effective prophylactic and therapeutic agents for the treatment of osteoporosis.


Assuntos
Envelhecimento , Dieta , Alimentos em Conserva , Frutas , Osteoporose/prevenção & controle , Prunus , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Densidade Óssea , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fitoterapia
9.
J Bone Miner Res ; 25(3): 584-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20200944

RESUMO

Age-dependent changes in skeletal growth are important for regulating skeletal expansion and determining peak bone mass. However, how G protein-coupled receptors (GPCRs) regulate these changes is poorly understood. Previously, we described a mouse model expressing Rs1, an engineered receptor with high basal G(s) activity. Rs1 expression in osteoblasts induced a dramatic age-dependent increase in trabecular bone with features resembling fibrous dysplasia. To further investigate how activation of the G(s)-GPCR pathway affects bone formation at different ages, we used the tetracycline-inducible system in the ColI(2.3)(+)/Rs1(+) mouse model to control the timing of Rs1 expression. We found that the Rs1 phenotype developed rapidly between postnatal days 4 and 6, that delayed Rs1 expression resulted in attenuation of the Rs1 phenotype, and that the Rs1-induced bone growth and deformities were markedly reversed when Rs1 expression was suppressed in adult mice. These findings suggest a distinct window of increased osteoblast responsiveness to G(s) signaling during the early postnatal period. In addition, adult bones encode information about their normal shape and structure independently from mechanisms regulating bone expansion. Finally, our model provides a powerful tool for investigating the effects of continuous G(s)-GPCR signaling on dynamic bone growth and remodeling.


Assuntos
Osteoblastos/metabolismo , Osteogênese/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Fatores Etários , Animais , Camundongos , Camundongos Transgênicos
10.
Bone ; 46(5): 1369-79, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19962460

RESUMO

Previously we observed that capsaicin treatment in rats inhibited sensory neuropeptide signaling, with a concurrent reduction in trabecular bone formation and bone volume, and an increase in osteoclast numbers and bone resorption. Calcitonin-gene-related peptide (CGRP) is a neuropeptide richly distributed in sensory neurons innervating the skeleton and we postulated that CGRP signaling regulates bone integrity. In this study we examined CGRP effects on stromal and bone cell differentiation and activity in vitro. CGRP receptors were detected by immunocytochemical staining and real time PCR assays in mouse bone marrow stromal cells (BMSCs) and bone marrow macrophages (BMMs). CGRP effects on BMSC proliferation and osteoblastic differentiation were studied using BrdU incorporation, PCR products, alkaline phosphatase (ALP) activity, and mineralization assays. CGRP effects on BMM osteoclastic differentiation and activity were determined by quantifying tartrate-resistant acid phosphatase positive (TRAP(+)) multinucleated cells, pit erosion area, mRNA levels of TRAP and cathepsin K, and nuclear factor-kappaB (NF-kappaB) nuclear localization. BMSCs, osteoblasts, BMMs, and osteoclasts all expressed CGRP receptors. CGRP (10(-10)-10(-8) M) stimulated BMSC proliferation, up-regulated the expression of osteoblastic genes, and increased ALP activity and mineralization in the BMSCs. In BMM cultures CGRP (10(-8) M) inhibited receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB. CGRP also down-regulated osteoclastic genes like TRAP and cathepsin K, decreased the numbers of TRAP(+) cells, and inhibited bone resorption activity in RANKL stimulated BMMs. These results suggest that CGRP signaling maintains bone mass both by directly stimulating stromal cell osteoblastic differentiation and by inhibiting RANKL induced NF-kappaB activation, osteoclastogenesis, and bone resorption.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , NF-kappa B/metabolismo , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Células Estromais/citologia , Fosfatase Alcalina/metabolismo , Animais , Western Blotting , Reabsorção Óssea/induzido quimicamente , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia de Fluorescência , Osteoclastos/efeitos dos fármacos , Reação em Cadeia da Polimerase , Células Estromais/efeitos dos fármacos
11.
Bone ; 45(2): 309-20, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19379851

RESUMO

INTRODUCTION: SP is a neuropeptide distributed in the sensory nerve fibers that innervate the medullar tissues of bone, as well as the periosteum. Previously we demonstrated that inhibition of neuropeptide signaling after capsaicin treatment resulted in a loss of bone mass and we hypothesized that SP contributes to bone integrity by stimulating osteogenesis. MATERIALS AND METHODS: Osteoblast precursors (bone marrow stromal cells, BMSCs) and osteoclast precursors (bone marrow macrophages, BMMs) derived from C57BL/6 mice were cultured. Expression of the SP receptor (NK1) was detected by using immunocytochemical staining and PCR. Effects of SP on proliferation and differentiation of BMSCs were studied by measuring BrdU incorporation, gene expression, alkaline phosphatase activity, and osteocalcin and Runx2 protein levels with EIA and western blot assays, respectively. Effects of SP on BMMs were determined using a BrdU assay, counting multinucleated cells staining positive for tartrate-resistant acid phosphatase (TRAP(+)), measuring pit erosion area, and evaluating RANKL protein production and NF-kappaB activity with ELISA and western blot. RESULTS: The NK1 receptor was expressed in both BMSCs and BMMs. SP stimulated the proliferation of BMSCs in a concentration-dependent manner. Low concentrations (10(-12) M) of SP stimulated alkaline phosphatase and osteocalcin expression, increased alkaline phosphatase activity, and up-regulated Runx2 protein levels, and higher concentrations of SP (10(-8) M) enhanced mineralization in differentiated BMSCs. SP also stimulated BMSCs to produce RANKL, but at concentrations too low to evoke osteoclastogenesis in co-culture with macrophages in the presence of SP. SP also activated NF-kappaB in BMMs and directly facilitate RANKL-induced macrophage osteoclastogenesis and bone resorption activity. CONCLUSIONS: NK1 receptors are expressed by osteoblast and osteoclast precursors and SP stimulates osteoblast and osteoclast differentiation and function in vitro. SP neurotransmitter release from sensory neurons could potentially regulate local bone turnover in vivo.


Assuntos
Células da Medula Óssea/citologia , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Células Estromais/citologia , Substância P/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Microscopia Confocal , NF-kappa B/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Transporte Proteico/efeitos dos fármacos , Ligante RANK/metabolismo , Ligante RANK/farmacologia , Receptores Imunológicos/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
12.
Proc Natl Acad Sci U S A ; 105(4): 1209-14, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18212126

RESUMO

Osteoblasts are essential for maintaining bone mass, avoiding osteoporosis, and repairing injured bone. Activation of osteoblast G protein-coupled receptors (GPCRs), such as the parathyroid hormone receptor, can increase bone mass; however, the anabolic mechanisms are poorly understood. Here we use "Rs1," an engineered GPCR with constitutive G(s) signaling, to evaluate the temporal and skeletal effects of G(s) signaling in murine osteoblasts. In vivo, Rs1 expression induces a dramatic anabolic skeletal response, with midfemur girth increasing 1,200% and femur mass increasing 380% in 9-week-old mice. Bone volume, cellularity, areal bone mineral density, osteoblast gene markers, and serum bone turnover markers were also elevated. No such phenotype developed when Rs1 was expressed after the first 4 weeks of postnatal life, indicating an exquisite temporal sensitivity of osteoblasts to Rs1 expression. This pathway may represent an important determinant of bone mass and may open future avenues for enhancing bone repair and treating metabolic bone diseases.


Assuntos
Densidade Óssea/fisiologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/biossíntese , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Osteoblastos/química , Osteoblastos/metabolismo , Engenharia de Proteínas , Receptores 5-HT4 de Serotonina/biossíntese , Receptores 5-HT4 de Serotonina/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Humanos , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Engenharia de Proteínas/métodos , Agonistas do Receptor 5-HT4 de Serotonina , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
J Bone Miner Res ; 22(9): 1329-37, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17539737

RESUMO

UNLABELLED: We showed that the IGF-IR-null mutation in mature osteoblasts leads to less bone and decreased periosteal bone formation and impaired the stimulatory effects of PTH on osteoprogenitor cell proliferation and differentiation. INTRODUCTION: This study was carried out to examine the role of IGF-I signaling in mediating the actions of PTH on bone. MATERIALS AND METHODS: Three-month-old mice with an osteoblast-specific IGF-I receptor null mutation (IGF-IR OBKO) and their normal littermates were treated with vehicle or PTH (80 microg/kg body weight/d for 2 wk). Structural measurements of the proximal and midshaft of the tibia were made by microCT. Trabecular and cortical bone formation was measured by bone histomorphometry. Bone marrow stromal cells (BMSCs) were obtained to assess the effects of PTH on osteoprogenitor number and differentiation. RESULTS: The fat-free weight of bone normalized to body weight (FFW/BW), bone volume (BV/TV), and cortical thickness (C.Th) in both proximal tibia and shaft were all less in the IGF-IR OBKO mice compared with controls. PTH decreased FFW/BW of the proximal tibia more substantially in controls than in IGF-IR OBKO mice. The increase in C.Th after PTH in the proximal tibia was comparable in both control and IGF-IR OBKO mice. Although trabecular and periosteal bone formation was markedly lower in the IGF-IR OBKO mice than in the control mice, endosteal bone formation was comparable in control and IGF-IR OBKO mice. PTH stimulated endosteal bone formation only in the control animals. Compared with BMSCs from control mice, BMSCs from IGF-IR OBKO mice showed equal alkaline phosphatase (ALP)(+) colonies on day 14, but fewer mineralized nodules on day 28. Administration of PTH increased the number of ALP(+) colonies and mineralized nodules on days 14 and 28 in BMSCs from control mice, but not in BMSCs from IGF-IR OBKO mice. CONCLUSIONS: Our results indicate that the IGF-IR null mutation in mature osteoblasts leads to less bone and decreased bone formation, in part because of the requirement for the IGF-IR in mature osteoblasts to enable PTH to stimulate osteoprogenitor cell proliferation and differentiation.


Assuntos
Osso e Ossos/fisiologia , Hormônio Paratireóideo/fisiologia , Receptor IGF Tipo 1/fisiologia , Animais , Sequência de Bases , Biomarcadores/metabolismo , Peso Corporal , Proliferação de Células , Células Cultivadas , Primers do DNA , Camundongos , Camundongos Knockout , Mutação , Tamanho do Órgão , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
14.
J Bone Miner Res ; 22(8): 1271-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17488198

RESUMO

UNLABELLED: IGF-I plays an important anabolic role in stimulating bone formation and maintaining bone mass. We show that the pro-proliferative, anti-apoptotic, and functional responses to IGF-I in bone and BMSCs decrease with aging. These changes are associated with impaired receptor activation and signal transduction through the MAPK and PI3K pathways. INTRODUCTION: IGF-I is a potent anabolic agent having effects across diverse tissues and cell types. With aging, bone becomes resistant to the anabolic actions of IGF-I. To examine the effects of aging on bone responsiveness to IGF-I, we measured the pro-proliferative, anti-apoptotic, and functional responses of bone and bone marrow stromal cells (BMSCs) to IGF-I and evaluated IGF-I signal transduction in young, adult, and old mice. MATERIALS AND METHODS: Male C57BL/6 mice 6 wk (young), 6 mo (adult), and 24 mo (old) were treated with IGF-I for 2 wk using osmotic minipumps, and osteoblast proliferation (BrdU labeling) in vivo, and osteoprogenitor number (BMSC culture and calcium nodule formation) were measured. Proliferation, apoptosis, and expression of key osteoblast factors (alkaline phosphatase, collagen, osteocalcin, RANKL, osteoprotegerin (OPG), macrophage-colony stimulating factor [M-CSF]) and IGF-I signaling elements and their activation in IGF-I-treated cells were studied using QRT-PCR and Western blot analysis. Data were analyzed using ANOVA. RESULTS: Aging decreased the basal and IGF-I-stimulated number of BrdU-labeled osteoblasts and reduced the ability of IGF-I to stimulate osteoprogenitor formation (calcium nodule number) by 50%. The pro-proliferative and anti-apoptotic actions of IGF-I were blunted in cells from old animals. These changes were accompanied by age-related alterations in the ability of IGF-I to regulate alkaline phosphatase, collagen, osteocalcin, RANKL, OPG, and M-CSF expression. IGF-I binding was normal, but IGF-I receptor mRNA and protein expression was increased in aged animals by 2- and 10-fold, respectively. The age-related changes in proliferation, apoptosis, and function were accompanied by loss of IGF-I-induced signaling at the receptor level and at key regulatory sites along the MAPK (ERK1/2) and PI3K (AKT) pathways. CONCLUSIONS: Our data show that aging is accompanied by loss of bone and BMSC/osteoblast responsiveness to IGF-I and that these changes are associated with resistance to IGF-I signaling that involve receptor activation and downstream signaling events.


Assuntos
Envelhecimento/fisiologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/enzimologia , Fator de Crescimento Insulin-Like I/farmacologia , Receptor IGF Tipo 1/metabolismo , Fosfatase Alcalina/genética , Animais , Células Cultivadas , Colágeno/genética , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Camundongos , Osteocalcina/genética , Osteoclastos/efeitos dos fármacos , Osteoclastos/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Receptor IGF Tipo 1/genética
15.
J Appl Physiol (1985) ; 103(1): 125-31, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17412794

RESUMO

IGF-I stimulates osteoblast proliferation, bone formation, and increases bone volume in normal weight-bearing animals. During skeletal unloading or loss of weight bearing, bone becomes unresponsive to the anabolic effects of insulin-like growth factor I (IGF-I). To determine whether skeletal reloading after a period of unloading increases bone responsiveness to IGF-I, we examined bone structure and formation in response to IGF-I under different loading conditions. Twelve-week-old rats were divided into six groups: loaded (4 wk), unloaded (4 wk), and unloaded/reloaded (2/2 wk), and treated with IGF-I (2.5 mg x kg(-1) x day(-1)) or vehicle during the final 2 wk. Cortical bone formation rate (BFR), cancellous bone volume and architecture in the secondary spongiosa (tibia and vertebrae), and total volume and calcified volume in the primary spongiosa (tibia) were assessed. Periosteal BFR decreased during unloading, remained low during reloading in the vehicle-treated group, but was dramatically increased in IGF-I-treated animals. Cancellous bone volume decreased with unloading and increased with reloading, but the effect was exaggerated in the tibia of IGF-I-treated animals. Total and calcified volumes in the primary spongiosa decreased during unloading in the vehicle-treated animals. IGF-I treatment prevented the loss in volume. These data show that reloading after a period of skeletal unloading increases bone responsiveness to IGF-I, and they suggest that IGF-I may be of therapeutic use in patients who have lost bone as a consequence of prolonged skeletal disuse.


Assuntos
Regeneração Óssea , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Densidade Óssea , Regeneração Óssea/efeitos dos fármacos , Reabsorção Óssea/patologia , Reabsorção Óssea/fisiopatologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Modelos Animais de Doenças , Fíbula/metabolismo , Fíbula/fisiopatologia , Elevação dos Membros Posteriores , Úmero/metabolismo , Úmero/fisiopatologia , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Coluna Vertebral/metabolismo , Coluna Vertebral/fisiopatologia , Tíbia/metabolismo , Tíbia/fisiopatologia , Fatores de Tempo , Tomografia Computadorizada por Raios X , Suporte de Carga
16.
J Bone Miner Res ; 21(9): 1350-8, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16939393

RESUMO

UNLABELLED: We showed that IGF-I deficiency impaired osteoclastogenesis directly and/or indirectly by altering the interaction between stromal/osteoblastic cells and osteoclast precursors, reducing RANKL and M-CSF production. These changes lead to impaired bone resorption, resulting in high BV/TV in IGF-I null mice. INTRODUCTION: Although IGF-I has been clearly identified as an important growth factor in regulating osteoblast function, information regarding its role in osteoclastogenesis is limited. Our study was designed to analyze the role of IGF-I in modulating osteoclastogenesis using IGF-I knockout mice (IGF-I(-/-)). MATERIALS AND METHODS: Trabecular bone volume (BV/TV), osteoclast number, and morphology of IGF-I(-/-) or wildtype mice (IGF-I(+/+)) were evaluated in vivo by histological analysis. Osteoclast precursors from these mice were cultured in the presence of RANKL and macrophage-colony stimulating factor (M-CSF) or co-cultured with stromal/osteoblastic cells from either genotype. Osteoclast formation was assessed by measuring the number of multinucleated TRACP+ cells and pit formation. The mRNA levels of osteoclast regulation markers were determined by quantitative RT-PCR. RESULTS: In vivo, IGF-I(-/-) mice have higher BV/TV and fewer (76% of IGF-I(+/+)) and smaller osteoclasts with fewer nuclei. In vitro, in the presence of RANKL and M-CSF, osteoclast number (55% of IGF-I(+/+)) and resorptive area (30% of IGF-I(+/+)) in osteoclast precursor cultures from IGF-I(-/-) mice were significantly fewer and smaller than that from the IGF-I(+/+) mice. IGF-I (10 ng/ml) increased the size, number (2.6-fold), and function (resorptive area, 2.7-fold) of osteoclasts in cultures from IGF-I(+/+) mice, with weaker stimulation in cultures from IGF-I(-/-) mice. In co-cultures of IGF-I(-/-) osteoblasts with IGF-I(+/+) osteoclast precursors, or IGF-I(+/+) osteoblasts with IGF-I(-/-) osteoclast precursors, the number of osteoclasts formed was only 11% and 48%, respectively, of that from co-cultures of IGF-I(+/+) osteoblasts and IGF-I(+/+) osteoclast precursors. In the long bones from IGF-I(-/-) mice, mRNA levels of RANKL, RANK, M-CSF, and c-fms were 55%, 33%, 60%, and 35% of that from IGF-I(+/+) mice, respectively. CONCLUSIONS: Our results indicate that IGF-I regulates osteoclastogenesis by promoting their differentiation. IGF-I is required for maintaining the normal interaction between the osteoblast and osteoclast to support osteoclastogenesis through its regulation of RANKL and RANK expression.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/fisiologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Reabsorção Óssea/genética , Osso e Ossos/fisiologia , Proteínas de Transporte/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Técnicas In Vitro , Fator de Crescimento Insulin-Like I/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Osteogênese/genética , Osteoprotegerina , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores da Calcitonina/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia
17.
Endocrinology ; 147(10): 4753-61, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16857753

RESUMO

Although IGF-I has been identified as an important growth factor for the skeleton, the role of IGF-I on embryonic bone development remains unknown. Here we show that, in IGF-I-deficient (IGF-I(-/-)) mice, skeletal malformations, including short-limbed dwarfism, were evident at days post coitus (dpc) 14.5 to 18.5, accompanied by delays of mineralization in the spinal column, sternum, and fore paws. Reduced chondrocyte proliferation and increased chondrocyte apoptosis were identified in both the spinal ossification center and the growth plate of long bones. Abnormal chondrocyte differentiation and delayed initiation of mineralization was characterized by small size and fewer numbers of type X collagen expressing hypertrophic chondrocytes and lower osteocalcin expression. The Indian hedgehog-PTHrP feedback loop was altered; expression of Indian hedgehog was reduced in IGF-I(-/-) mice in long bones and in the spine, whereas expression of PTHrP was increased. Our results indicate that IGF-I plays an important role in skeletal development by promoting chondrocyte proliferation and maturation while inhibiting apoptosis to form bones of appropriate size and strength.


Assuntos
Desenvolvimento Ósseo/fisiologia , Osso e Ossos/embriologia , Fator de Crescimento Insulin-Like I/fisiologia , Animais , Osso e Ossos/citologia , Calcificação Fisiológica/genética , Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Condrócitos/fisiologia , Condrócitos/ultraestrutura , Colágeno Tipo II/metabolismo , Fator de Crescimento Insulin-Like I/deficiência , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Proteína Relacionada ao Hormônio Paratireóideo/biossíntese , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
J Endocrinol ; 189(2): 279-87, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16648295

RESUMO

Parathyroid hormone (PTH) exerts both catabolic and anabolic actions on bone. Studies on the skeletal effects of PTH have seldom considered the effects of gender. Our study was designed to determine whether the response of mouse bone to PTH differed according to sex. As a first step, we analyzed gender differences with respect to bone mass and structural properties of 4 month old PTH treated (80 microg/kg per day for 2 weeks) male and female CD-1 mice. PTH significantly increased fat free weight/body weight, periosteal bone formation rate, mineral apposition rate, and endosteal single labeling surface, while significantly decreasing medullary area in male mice compared with vehicle treated controls, but induced no significant changes in female mice. We then analyzed the gender differences in bone marrow stromal cells (BMSC) isolated from 4 month old male and female CD-1 mice following treatment with PTH (80 microg/kg per day for 2 weeks). PTH significantly increased the osteogenic colony number and the alkaline phosphatase (ALP) activity (ALP/cell) by day 14 in cultures of BMSCs from male and female mice. PTH also increased the mRNA level of receptor activator of nuclear factor kappaB ligand in the bone tissue (marrow removed) of both females and males. However, PTH increased the mRNA levels of IGF-I and IGF-IR only in the bones of male mice. Our results indicate that on balance a 2-weeks course of PTH is anabolic on cortical bone in this mouse strain. These effects are more evident in the male mouse. These differences between male and female mice may reflect the greater response to PTH of IGF-I and IGF-IR gene expression in males enhancing the anabolic effect on cortical bone.


Assuntos
Osso e Ossos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Hormônio Paratireóideo/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/análise , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/enzimologia , Células da Medula Óssea/metabolismo , Osso e Ossos/anatomia & histologia , Osso e Ossos/efeitos dos fármacos , Proteínas de Transporte/análise , Contagem de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Fator de Crescimento Insulin-Like I/análise , Masculino , Glicoproteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Hormônio Paratireóideo/farmacologia , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Receptor IGF Tipo 1/análise , Fatores Sexuais , Células Estromais/efeitos dos fármacos , Células Estromais/enzimologia , Células Estromais/metabolismo , Tíbia
19.
J Biomed Mater Res A ; 77(4): 688-99, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16514602

RESUMO

This study was designed to test the hypothesis that the mechanical properties of a trabecular bone substitute can be enhanced through in vitro tissue formation. Our specific objectives were to (1) determine the effects of in vitro marrow stromal cell-mediated tissue deposition upon a trabeculated hydroxyapatite scaffold on the strength and toughness of the resulting bone substitute; and (2) identify and characterize regions of newly deposited matrix and mineral. This work provides a basis for future investigations aimed at transforming a brittle hydroxyapatite scaffold into an osteoinductive, biomechanically functional implant through in vitro bone deposition. As hypothesized, the mechanical properties of the trabecular bone substitutes were significantly enhanced by in vitro tissue formation. As a result of cell seeding and a 5 week culture protocol, mean strength increased by 85% (p = 0.008) and energy to fracture increased by 130% (p = 0.003). Accompanying the enhancement of mechanical properties was the deposition of significant amounts of bone matrix and mineral. Fluorescence imaging, scanning electron microscopy, electron probe microanalysis, and nanoindentation confirmed the presence of bonelike mineral with Ca/P ratio, modulus, and hardness similar to that within human and rat trabecular bone tissue. This new mineralization was found to exist within a newly deposited parallel-fibered matrix both encasing and bridging between scaffold trabeculae. Taken as a whole, our results establish the feasibility of the production of an osteoinductive hydroxyapatite-based trabecular bone substitute with mechanical properties enhanced through in vitro bone deposition.


Assuntos
Regeneração Óssea/fisiologia , Substitutos Ósseos , Durapatita , Teste de Materiais , Animais , Células da Medula Óssea , Células Cultivadas , Humanos , Ratos , Ratos Sprague-Dawley , Células Estromais
20.
J Bone Miner Res ; 20(9): 1659-68, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16059637

RESUMO

UNLABELLED: Stromal/osteoblastic cell expression of RANKL and M-CSF regulates osteoclastogenesis. We show that aging is accompanied by increased RANKL and M-CSF expression, increased stromal/osteoblastic cell-induced osteoclastogenesis, and expansion of the osteoclast precursor pool. These changes correlate with age-related alterations in the relationship between osteoblasts and osteoclasts in cancellous bone. INTRODUCTION: Bone mass is maintained through a balance between osteoblast and osteoclast activity. Osteoblasts regulate the number and activity of osteoclasts through expression of RANKL, osteoprotegerin (OPG), and macrophage-colony stimulation factor (M-CSF). To determine whether age-related changes in stromal/osteoblastic cell expression of RANKL, OPG, and M-CSF are associated with stimulation of osteoclastogenesis and whether the osteoclast precursor pool changes with age, we studied cultures of stromal/osteoblastic cells and osteoclast precursor cells from animals of different ages and examined how aging influences bone cell populations in vivo. MATERIALS AND METHODS: Osteoclast precursors from male C57BL/6 mice of 6 weeks (young), 6 months (adult), and 24 months (old) of age were either co-cultured with stromal/osteoblastic cells from young, adult, or old mice or treated with M-CSF, RANKL, and/or OPG. Osteoclast precursor pool size was determined by fluorescence-activated cell sorting (FACS), and osteoclast formation was assessed by measuring the number of multinucleated TRACP(+) cells and pit formation. The levels of mRNA for RANKL, M-CSF, and OPG were determined by quantitative RT-PCR, and transcription was measured by PCR-based run-on assays. Osteoblast and osteoclast numbers in bone were measured by histomorphometry. RESULTS: Osteoclast formation increased dramatically when stromal/osteoblastic cells from old compared with young donors were used to induce osteoclastogenesis. Regardless of the origin of the stromal/osteoblastic cells, the number of osteoclasts formed from the nonadherent population of cells increased with increasing age. Stromal/osteoblastic cell expression of RANKL and M-CSF increased, whereas OPG decreased with aging. Exogenously administered RANKL and M-CSF increased, dose-dependently, osteoclast formation from all donors, but the response was greater in cells from old donors. Osteoclast formation in vitro positively, and the ratio of osteoblasts to osteoclasts in vivo negatively, correlated with the ratio of RANKL to OPG expression in stromal/osteoblastic cells for all ages. The effects of RANKL-induced osteoclastogenesis in vitro were blocked by OPG, suggesting a causal relationship between RANKL expression and osteoclast-inducing potential. The osteoclast precursor pool and expression of RANK and c-fms increased with age. CONCLUSIONS: Our results show that aging significantly increases stromal/osteoblastic cell-induced osteoclastogenesis, promotes expansion of the osteoclast precursor pool and alters the relationship between osteoblasts and osteoclasts in cancellous bone.


Assuntos
Envelhecimento , Regulação da Expressão Gênica , Osteoblastos/citologia , Células Estromais/citologia , Fosfatase Ácida/farmacologia , Fatores Etários , Animais , Reabsorção Óssea , Osso e Ossos/metabolismo , Proteínas de Transporte/biossíntese , Núcleo Celular/metabolismo , Separação Celular , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Citometria de Fluxo , Glicoproteínas/metabolismo , Separação Imunomagnética , Isoenzimas/farmacologia , Fator Estimulador de Colônias de Macrófagos/biossíntese , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Masculino , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteoporose , Osteoprotegerina , Reação em Cadeia da Polimerase , Ligante RANK , RNA Mensageiro/metabolismo , Receptor Ativador de Fator Nuclear kappa-B , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fosfatase Ácida Resistente a Tartarato , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...