Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5328, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909023

RESUMO

Despite extensive studies on DNA replication, the exchange mechanisms of DNA polymerase during replication remain unclear. Existing models propose that this exchange is facilitated by protein partners like helicase. Here we present data, employing a combination of mechanical DNA manipulation and single fluorescent protein observation, that reveal DNA polymerase undergoing rapid and autonomous exchange during replication not coordinated by other proteins. The DNA polymerase shows fast unbinding and rebinding dynamics, displaying a preference for either exonuclease or polymerase activity, or pausing events, during each brief binding event. We also observed a 'memory effect' in DNA polymerase rebinding, i.e., the enzyme tends to preserve its prior activity upon reassociation. This effect, potentially linked to the ssDNA/dsDNA junction's conformation, might play a role in regulating binding preference enabling high processivity amidst rapid protein exchange. Taken together, our findings support an autonomous replication model that includes rapid protein exchange, burst of activity, and a 'memory effect' while moving processively forward.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA/metabolismo , DNA/química , Escherichia coli/metabolismo , Escherichia coli/genética , DNA de Cadeia Simples/metabolismo , Ligação Proteica
2.
Biophys Rep ; 10(1): 48-56, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38737478

RESUMO

Optical tweezers have elucidated numerous biological processes, particularly by enabling the precise manipulation and measurement of tension. One question concerns the biological relevance of these experiments and the generalizability of these experiments to wider biological systems. Here, we categorize the applicability of the information garnered from optical tweezers in two distinct categories: the direct relevance of tension in biological systems, and what experiments under tension can tell us about biological systems, while these systems do not reach the same tension as the experiment, still, these artificial experimental systems reveal insights into the operations of biological machines and life processes.

3.
Nutrients ; 15(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836529

RESUMO

Cancer is amenable to low-cost treatments, given that it has a significant metabolic component, which can be affected through diet and lifestyle change at minimal cost. The Warburg hypothesis states that cancer cells have an altered cell metabolism towards anaerobic glycolysis. Given this metabolic reprogramming in cancer cells, it is possible to target cancers metabolically by depriving them of glucose. In addition to dietary and lifestyle modifications which work on tumors metabolically, there are a panoply of nutritional supplements and repurposed drugs associated with cancer prevention and better treatment outcomes. These interventions and their evidentiary basis are covered in the latter half of this review to guide future cancer treatment.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Glicólise , Metabolismo Energético , Resultado do Tratamento
4.
Ann Neurosci ; 30(2): 133-142, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37706102

RESUMO

Background: The relationship between the quality of the learning environment and student outcomes is receiving more serious attention from educational psychologists, neurologists, ophthalmologists, orthopedists, surgeons, oncologists, architects, ergonomists, nutritionists, and Michelin star chefs. There is a role for ergonomic office and school design to positively impact worker and student productivity, and one design attribute drawing attention is the indoor lit environment. In this review, we expand upon the role that light plays in education, as it has enabled millions of pupils to read at late hours, which were previously too dark. However, still unappreciated is the biological effects of artificial light on circadian rhythm and its subsequent impacts on health and learning outcomes. Summary: This review describes the current state of light in the educational environment, its impact, and the effect of certain inexpensive and easy-to-implement adaptations to better support student growth, learning and development. We find that the current lighting environment for pupils is sub-optima based on biological mechanism and may be improved through cost effective interventions. These interventions can achieve greater biological harmonization and improve learner outcomes. Key Message: The impact of the lighting environment in educational institutions on pupil biology has received minimal attention thus far. The current lighting environment in schools is not conducive to student health and educational performance. Cost-effective approaches can have an outsized impact on student health and educational attainment. We strongly recommend educational institutions take the lit environment into account when designing educational programs.

5.
Microorganisms ; 11(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37317282

RESUMO

In the wake of the COVID-19 crisis, a need has arisen to prevent and treat two related conditions, COVID-19 vaccine injury and long COVID-19, both of which can trace at least part of their aetiology to the spike protein, which can cause harm through several mechanisms. One significant mechanism of harm is vascular, and it is mediated by the spike protein, a common element of the COVID-19 illness, and it is related to receiving a COVID-19 vaccine. Given the significant number of people experiencing these two related conditions, it is imperative to develop treatment protocols, as well as to consider the diversity of people experiencing long COVID-19 and vaccine injury. This review summarizes the known treatment options for long COVID-19 and vaccine injury, their mechanisms, and their evidentiary basis.

6.
Nucleic Acids Res ; 51(13): 6540-6553, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37254785

RESUMO

Bacteriophage T7 single-stranded DNA-binding protein (gp2.5) binds to and protects transiently exposed regions of single-stranded DNA (ssDNA) while dynamically interacting with other proteins of the replication complex. We directly visualize fluorescently labelled T7 gp2.5 binding to ssDNA at the single-molecule level. Upon binding, T7 gp2.5 reduces the contour length of ssDNA by stacking nucleotides in a force-dependent manner, suggesting T7 gp2.5 suppresses the formation of secondary structure. Next, we investigate the binding dynamics of T7 gp2.5 and a deletion mutant lacking 21 C-terminal residues (gp2.5-Δ21C) under various template tensions. Our results show that the base sequence of the DNA molecule, ssDNA conformation induced by template tension, and the acidic terminal domain from T7 gp2.5 significantly impact on the DNA binding parameters of T7 gp2.5. Moreover, we uncover a unique template-catalyzed recycling behaviour of T7 gp2.5, resulting in an apparent cooperative binding to ssDNA, facilitating efficient spatial redistribution of T7 gp2.5 during the synthesis of successive Okazaki fragments. Overall, our findings reveal an efficient binding mechanism that prevents the formation of secondary structures by enabling T7 gp2.5 to rapidly rebind to nearby exposed ssDNA regions, during lagging strand DNA synthesis.


Assuntos
Bacteriófago T7 , Proteínas Virais , Bacteriófago T7/genética , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Conformação Molecular , Proteínas Virais/metabolismo
7.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769124

RESUMO

Single-stranded DNA-binding proteins (SSBs) play vital roles in DNA metabolism. Proteins of the SSB family exclusively and transiently bind to ssDNA, preventing the DNA double helix from re-annealing and maintaining genome integrity. In the meantime, they interact and coordinate with various proteins vital for DNA replication, recombination, and repair. Although SSB is essential for DNA metabolism, proteins of the SSB family have been long described as accessory players, primarily due to their unclear dynamics and mechanistic interaction with DNA and its partners. Recently-developed single-molecule tools, together with biochemical ensemble techniques and structural methods, have enhanced our understanding of the different coordination roles that SSB plays during DNA metabolism. In this review, we discuss how single-molecule assays, such as optical tweezers, magnetic tweezers, Förster resonance energy transfer, and their combinations, have advanced our understanding of the binding dynamics of SSBs to ssDNA and their interaction with other proteins partners. We highlight the central coordination role that the SSB protein plays by directly modulating other proteins' activities, rather than as an accessory player. Many possible modes of SSB interaction with protein partners are discussed, which together provide a bigger picture of the interaction network shaped by SSB.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Ligação Proteica , Transferência Ressonante de Energia de Fluorescência/métodos , DNA de Cadeia Simples , Proteínas de Escherichia coli/metabolismo
8.
Drug Discov Today ; 28(1): 103443, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396117

RESUMO

The time taken and the cost of producing novel therapeutic drugs presents a significant burden - a typical target-based drug discovery process involves computational screening of drug libraries, compound assays and expensive clinical trials. This review summarises the value of dynamic conformational information obtained by optical tweezers and how this information can target 'undruggable' proteins. Optical tweezers provide insights into the link between biological mechanisms and structural conformations, which can be used in drug discovery. Developing workflows including software and sample preparation will improve throughput, enabling adoption of optical tweezers in biopharma. As a complementary tool, optical tweezers increase the number of drug candidates, improve the understanding of a target's complex structural dynamics and elucidate interactions between compounds and their targets.


Assuntos
Pinças Ópticas , Proteínas , Proteínas/metabolismo , Descoberta de Drogas , Conformação Molecular
9.
Front Chem ; 10: 1062352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561139

RESUMO

The economical and societal impact of COVID-19 has made the development of vaccines and drugs to combat SARS-CoV-2 infection a priority. While the SARS-CoV-2 spike protein has been widely explored as a drug target, the SARS-CoV-2 helicase (nsp13) does not have any approved medication. The helicase shares 99.8% similarity with its SARS-CoV-1 homolog and was shown to be essential for viral replication. This review summarizes and builds on existing research on inhibitors of SARS-CoV-1 and SARS-CoV-2 helicases. Our analysis on the toxicity and specificity of these compounds, set the road going forward for the repurposing of existing drugs and the development of new SARS-CoV-2 helicase inhibitors.

10.
Viruses ; 14(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215770

RESUMO

Recurrent outbreaks of novel zoonotic coronavirus (CoV) diseases in recent years have highlighted the importance of developing therapeutics with broad-spectrum activity against CoVs. Because all CoVs use -1 programmed ribosomal frameshifting (-1 PRF) to control expression of key viral proteins, the frameshift signal in viral mRNA that stimulates -1 PRF provides a promising potential target for such therapeutics. To test the viability of this strategy, we explored whether small-molecule inhibitors of -1 PRF in SARS-CoV-2 also inhibited -1 PRF in a range of bat CoVs-the most likely source of future zoonoses. Six inhibitors identified in new and previous screens against SARS-CoV-2 were evaluated against the frameshift signals from a panel of representative bat CoVs as well as MERS-CoV. Some drugs had strong activity against subsets of these CoV-derived frameshift signals, while having limited to no effect on -1 PRF caused by frameshift signals from other viruses used as negative controls. Notably, the serine protease inhibitor nafamostat suppressed -1 PRF significantly for multiple CoV-derived frameshift signals. These results suggest it is possible to find small-molecule ligands that inhibit -1 PRF specifically in a broad spectrum of CoVs, establishing frameshift signals as a viable target for developing pan-coronaviral therapeutics.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/genética , Mutação da Fase de Leitura , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Animais , Antivirais/uso terapêutico , Quirópteros/virologia , Coronavirus/classificação , Infecções por Coronavirus/tratamento farmacológico , Conformação de Ácido Nucleico , RNA Mensageiro/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
11.
Phys Rev Lett ; 126(3): 038102, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543960

RESUMO

-1 programmed ribosomal frameshifting (-1 PRF) is stimulated by structures in messenger RNA (mRNA), but the factors determining -1 PRF efficiency are unclear. We show that -1 PRF efficiency varies directly with the conformational heterogeneity of the stimulatory structure, quantified as the Shannon entropy of the state occupancy, for a panel of stimulatory structures with efficiencies from 2% to 80%. The correlation is force dependent and vanishes at forces above those applied by the ribosome. These results support the hypothesis that heterogeneous conformational dynamics are a key factor in stimulating -1 PRF.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Modelos Genéticos , RNA Mensageiro/química , RNA Mensageiro/genética , Simulação por Computador , Entropia , Humanos , Microscopia de Força Atômica/métodos , Conformação de Ácido Nucleico
12.
Proc Natl Acad Sci U S A ; 116(39): 19500-19505, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31409714

RESUMO

Specific structures in mRNA can stimulate programmed ribosomal frameshifting (PRF). PRF efficiency can vary enormously between different stimulatory structures, but the features that lead to efficient PRF stimulation remain uncertain. To address this question, we studied the structural dynamics of the frameshift signal from West Nile virus (WNV), which stimulates -1 PRF at very high levels and has been proposed to form several different structures, including mutually incompatible pseudoknots and a double hairpin. Using optical tweezers to apply tension to single mRNA molecules, mimicking the tension applied by the ribosome during PRF, we found that the WNV frameshift signal formed an unusually large number of different metastable structures, including all of those previously proposed. From force-extension curve measurements, we mapped 2 mutually exclusive pathways for the folding, each encompassing multiple intermediates. We identified the intermediates in each pathway from length changes and the effects of antisense oligomers blocking formation of specific contacts. Intriguingly, the number of transitions between the different conformers of the WNV frameshift signal was maximal in the range of forces applied by the ribosome during -1 PRF. Furthermore, the occupancy of the pseudoknotted conformations was far too low for static pseudoknots to account for the high levels of -1 PRF. These results support the hypothesis that conformational heterogeneity plays a key role in frameshifting and suggest that transitions between different conformers under tension are linked to efficient PRF stimulation.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Dobramento de RNA/fisiologia , RNA Mensageiro/metabolismo , Mutação da Fase de Leitura/genética , Mutação da Fase de Leitura/fisiologia , Mudança da Fase de Leitura do Gene Ribossômico/genética , Microscopia de Força Atômica/métodos , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Viral/genética , Ribossomos/metabolismo , Relação Estrutura-Atividade , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...