Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37370610

RESUMO

Glaucoma, where increased intraocular pressure (IOP) leads to damage to the optic nerve and loss of sight, is amongst the foremost causes of irreversible blindness worldwide. In primary open angle glaucoma, the increased IOP is a result of the malfunctioning human trabecular meshwork (HTM) cells' inability to properly regulate the outflow of aqueous humor from the eye. A potential future treatment for glaucoma is to replace damaged HTM cells with a tissue-engineered substitute, thus restoring proper fluid outflow. Polycaprolactone (PCL) is a versatile, biodegradable, and implantable material that is widely used for cell culture and tissue engineering. In this work, PCL scaffolds were lithographically fabricated using a sacrificial process to produce submicron-thick scaffolds with openings of specific sizes and shapes (e.g., grid, hexagonal pattern). The HTM cell growth on gelatin-coated PCL scaffolds was assessed by scanning electron microscopy, tetrazolium metabolic activity assay, and cytoskeletal organization of F-actin. Expression of HTM-specific markers and ECM deposition were assessed by immunocytochemistry and qPCR analysis. Gelatin-coated, micropatterned, ultrathin, porous PCL scaffolds with a grid pattern supported proper HTM cell growth, cytoskeleton organization, HTM-marker expression, and ECM deposition, demonstrating the feasibility of using these PCL scaffolds to tissue-engineer implantable, healthy ocular outflow tissue.

2.
Nanomedicine ; 36: 102418, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34171470

RESUMO

Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance. Here, we investigated the role of LPCATs in the melanoma cell radiotherapy response. LPCAT is a family of four enzymes, LPCAT1-4, and modular nucleic acid nanoparticles (NANPs) allowed for the simultaneous silencing of all four LPCATs. We found that the in vitro simultaneous silencing of all four LPCAT transcripts by NANPs enhanced the therapeutic effects of radiation in melanoma cells by increasing cell death, reducing long-term cell survival, and activating apoptosis. Thus, we propose that NANPs are an effective strategy for improving radiotherapy efficacy in melanomas.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Inativação Gênica , Melanoma , Nanopartículas , Proteínas de Neoplasias , Ácidos Nucleicos , 1-Acilglicerofosfocolina O-Aciltransferase/antagonistas & inibidores , 1-Acilglicerofosfocolina O-Aciltransferase/biossíntese , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacologia
3.
Nucleic Acids Res ; 48(20): 11785-11798, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33091133

RESUMO

Nucleic acid nanoparticles (NANPs) have become powerful new platforms as therapeutic and diagnostic tools due to the innate biological ability of nucleic acids to identify target molecules or silence genes involved in disease pathways. However, the clinical application of NANPs has been limited by factors such as chemical instability, inefficient intracellular delivery, and the triggering of detrimental inflammatory responses following innate immune recognition of nucleic acids. Here, we have studied the effects of altering the chemical composition of a circumscribed panel of NANPs that share the same connectivity, shape, size, charge and sequences. We show that replacing RNA strands with either DNA or chemical analogs increases the enzymatic and thermodynamic stability of NANPs. Furthermore, we have found that such composition changes affect delivery efficiency and determine subcellular localization, effects that could permit the targeted delivery of NANP-based therapeutics and diagnostics. Importantly, we have determined that altering NANP composition can dictate the degree and mechanisms by which cell immune responses are initiated. While RNA NANPs trigger both TLR7 and RIG-I mediated cytokine and interferon production, DNA NANPs stimulate minimal immune activation. Importantly, incorporation of 2'F modifications abrogates RNA NANP activation of TLR7 but permits RIG-I dependent immune responses. Furthermore, 2'F modifications of DNA NANPs significantly enhances RIG-I mediated production of both proinflammatory cytokines and interferons. Collectively this indicates that off-target effects may be reduced and/or desirable immune responses evoked based upon NANPs modifications. Together, our studies show that NANP composition provides a simple way of controlling the immunostimulatory potential, and physicochemical and delivery characteristics, of such platforms.


Assuntos
DNA/química , Nanopartículas/química , RNA/química , Transporte Biológico , Linhagem Celular , Citocinas/biossíntese , DNA/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , NF-kappa B/metabolismo , Nanopartículas/metabolismo , Oligonucleotídeos/química , RNA/metabolismo , Termodinâmica
4.
J Neuroinflammation ; 17(1): 139, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357908

RESUMO

BACKGROUND: Bacterial meningitis and meningoencephalitis are associated with devastating neuroinflammation. We and others have demonstrated the importance of glial cells in the initiation of immune responses to pathogens invading the central nervous system (CNS). These cells use a variety of pattern recognition receptors (PRRs) to identify common pathogen motifs and the cytosolic sensor retinoic acid inducible gene-1 (RIG-I) is known to serve as a viral PRR and initiator of interferon (IFN) responses. Intriguingly, recent evidence indicates that RIG-I also has an important role in the detection of bacterial nucleic acids, but such a role has not been investigated in glia. METHODS: In this study, we have assessed whether primary or immortalized human and murine glia express RIG-I either constitutively or following stimulation with bacteria or their products by immunoblot analysis. We have used capture ELISAs and immunoblot analysis to assess human microglial interferon regulatory factor 3 (IRF3) activation and IFN production elicited by bacterial nucleic acids and novel engineered nucleic acid nanoparticles. Furthermore, we have utilized a pharmacological inhibitor of RIG-I signaling and siRNA-mediated knockdown approaches to assess the relative importance of RIG-I in such responses. RESULTS: We demonstrate that RIG-I is constitutively expressed by human and murine microglia and astrocytes, and is elevated following bacterial infection in a pathogen and cell type-specific manner. Additionally, surface and cytosolic PRR ligands are also sufficient to enhance RIG-I expression. Importantly, our data demonstrate that bacterial RNA and DNA both trigger RIG-I-dependent IRF3 phosphorylation and subsequent type I IFN production in human microglia. This ability has been confirmed using our nucleic acid nanoparticles where we demonstrate that both RNA- and DNA-based nanoparticles can stimulate RIG-I-dependent IFN responses in these cells. CONCLUSIONS: The constitutive and bacteria-induced expression of RIG-I by human glia and its ability to mediate IFN responses to bacterial RNA and DNA and nucleic acid nanoparticles raises the intriguing possibility that RIG-I may be a potential target for therapeutic intervention during bacterial infections of the CNS, and that the use of engineered nucleic acid nanoparticles that engage this sensor might be a method to achieve this goal.


Assuntos
DNA Bacteriano/imunologia , Microglia/imunologia , RNA Bacteriano/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Receptores do Ácido Retinoico/imunologia , Animais , Células Cultivadas , Humanos , Fator Regulador 3 de Interferon/biossíntese , Interferons/biossíntese , Camundongos , Camundongos Endogâmicos C57BL
5.
Nanomedicine ; 23: 102094, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669854

RESUMO

Programmable nucleic acid nanoparticles (NANPs) provide controlled coordination of therapeutic nucleic acids (TNAs) and other biological functionalities. Beyond multivalence, recent reports demonstrate that NANP technology can also elicit a specific immune response, adding another layer of customizability to this innovative approach. While the delivery of nucleic acids remains a challenge, new carriers are introduced and tested continuously. Polymeric platforms have proven to be efficient in shielding nucleic acid cargos from nuclease degradation while promoting their delivery and intracellular release. Here, we venture beyond the delivery of conventional TNAs and combine the stable cationic poly-(lactide-co-glycolide)-graft-polyethylenimine with functionalized NANPs. Furthermore, we compare several representative NANPs to assess how their overall structures influence their delivery with the same carrier. An extensive study of various formulations both in vitro and in vivo reveals differences in their immunostimulatory activity, gene silencing efficiency, and biodistribution, with fibrous NANPs advancing for TNA delivery.


Assuntos
Adjuvantes Imunológicos , Inativação Gênica , Nanopartículas/química , Ácidos Nucleicos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacocinética , Adjuvantes Imunológicos/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacocinética , Ácidos Nucleicos/farmacologia
7.
Nanomaterials (Basel) ; 9(7)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31261977

RESUMO

The use of nucleic acids (RNA and DNA) offers a unique and multifunctional platform for numerous applications including therapeutics, diagnostics, nanodevices, and materials [...].

8.
Molecules ; 24(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897721

RESUMO

Infusion reactions (IRs) create a translational hurdle for many novel therapeutics, including those utilizing nanotechnology. Nucleic acid nanoparticles (NANPs) are a novel class of therapeutics prepared by rational design of relatively short oligonucleotides to self-assemble into various programmable geometric shapes. While cytokine storm, a common type of IR, has halted clinical development of several therapeutic oligonucleotides, NANP technologies hold tremendous potential to bring these reactions under control by tuning the particle's physicochemical properties to the desired type and magnitude of the immune response. Recently, we reported the very first comprehensive study of the structure⁻activity relationship between NANPs' shape, size, composition, and their immunorecognition in human cells, and identified the phagolysosomal pathway as the major route for the NANPs' uptake and subsequent immunostimulation. Here, we explore the molecular mechanism of NANPs' recognition by primary immune cells, and particularly the contributing role of the Toll-like receptors. Our current study expands the understanding of the immune recognition of engineered nucleic acid-based therapeutics and contributes to the improvement of the nanomedicine safety profile.


Assuntos
Leucócitos Mononucleares/metabolismo , Nanopartículas/química , Ácidos Nucleicos/química , Células Cultivadas , Eletroporação , Humanos , Nanotecnologia/métodos , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
9.
Nanoscale ; 10(37): 17761-17770, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30215080

RESUMO

RNA is now widely acknowledged not only as a multifunctional biopolymer but also as a dynamic material for constructing nanostructures with various biological functions. Programmable RNA nanoparticles (NPs) allow precise control over their formulation and activation of multiple functionalities, with the potential to self-assemble in biological systems. These attributes make them attractive for drug delivery and therapeutic applications. In the present study, we demonstrate the ability of iron oxide magnetic nanoparticles (MNPs) to deliver different types of RNA NPs functionalized with dicer substrate RNAs inside human cells. Our results show that use of functionalized RNA NPs result in statistically higher transfection efficiency compared to the use of RNA duplexes. Furthermore, we show that the nucleic acids in the MNP/RNA NP complexes are protected from nuclease degradation and that they can achieve knockdown of target protein expression, which is amplified by magnetic stimulus. The current work represents the very first report indicating that iron oxide nanoparticles may efficiently protect and deliver programmable RNA NPs to human cells.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita , RNA/química , Linhagem Celular Tumoral , Compostos Férricos , Humanos , Magnetismo , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Polietilenoimina , Transfecção
10.
Nano Lett ; 18(7): 4309-4321, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894623

RESUMO

Nucleic acid nanoparticles (NANPs) have evolved as a new class of therapeutics with the potential to detect and treat diseases. Despite tremendous advancements in NANP development, their immunotoxicity, one of the major impediments in clinical translation of traditional therapeutic nucleic acids (TNAs), has never been fully characterized. Here, we describe the first systematically studied immunological recognition of 25 representative RNA and DNA NANPs selected to have different design principles and physicochemical properties. We discover that, unlike traditional TNAs, NANPs used without a delivery carrier are immunoquiescent. We show that interferons (IFNs) are the key cytokines triggered by NANPs after their internalization by phagocytic cells, which agrees with predictions based on the experiences with TNAs. However, in addition to type I IFNs, type III IFNs also serve as reliable biomarkers of NANPs, which is usually not characteristic of TNAs. We show that overall immunostimulation relies on NANP shapes, connectivities, and compositions. We demonstrate that, like with traditional TNAs, plasmacytoid dendritic cells serve as the primary interferon producers among all peripheral blood mononuclear cells treated with NANPs, and scavenger receptor-mediated uptake and endosomal Toll-like receptor signaling are essential for NANP immunorecognition. The TLR involvement, however, is different from that expected for traditional TNA recognition. Based on these results, we suggest that NANP technology may serve as a prototype of auxiliary molecular language for communication with the immune system and the modulation of immune responses.


Assuntos
Imunidade Inata/efeitos dos fármacos , Interferons/antagonistas & inibidores , Nanopartículas/uso terapêutico , Ácidos Nucleicos/uso terapêutico , DNA/efeitos adversos , DNA/imunologia , DNA/uso terapêutico , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Interferons/genética , Interferons/imunologia , Nanopartículas/efeitos adversos , Nanopartículas/ultraestrutura , Ácidos Nucleicos/efeitos adversos , Ácidos Nucleicos/imunologia , Ácidos Nucleicos/ultraestrutura , RNA/efeitos adversos , RNA/imunologia , RNA/uso terapêutico
11.
Adv Funct Mater ; 28(48)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31258458

RESUMO

RNA is a versatile biomaterial that can be used to engineer nanoassemblies for personalized treatment of various diseases. Despite promising advancements, the design of RNA nanoassemblies with minimal recognition by the immune system remains a major challenge. Here, an approach is reported to engineer RNA fibrous structures to operate as a customizable platform for efficient coordination of siRNAs and for maintaining low immunostimulation. Functional RNA fibers are studied in silico and their formation is confirmed by various experimental techniques and visualized by atomic force microscopy (AFM). It is demonstrated that the RNA fibers offer multiple advantages among which are: i) programmability and modular design that allow for simultaneous controlled delivery of multiple siRNAs and fluorophores, ii) reduced immunostimulation when compared to other programmable RNA nanoassemblies, and iii) simple production protocol for endotoxin-free fibers with the option of their cotranscriptional assembly. Furthermore, it is shown that functional RNA fibers can be efficiently delivered with various organic and inorganic carriers while retaining their structural integrity in cells. Specific gene silencing triggered by RNA fibers is assessed in human breast cancer and melanoma cell lines, with the confirmed ability of functional fibers to selectively target single nucleotide mutations.

12.
Small ; 13(42)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28922553

RESUMO

In the past few years, the study of therapeutic RNA nanotechnology has expanded tremendously to encompass a large group of interdisciplinary sciences. It is now evident that rationally designed programmable RNA nanostructures offer unique advantages in addressing contemporary therapeutic challenges such as distinguishing target cell types and ameliorating disease. However, to maximize the therapeutic benefit of these nanostructures, it is essential to understand the immunostimulatory aptitude of such tools and identify potential complications. This paper presents a set of 16 nanoparticle platforms that are highly configurable. These novel nucleic acid based polygonal platforms are programmed for controllable self-assembly from RNA and/or DNA strands via canonical Watson-Crick interactions. It is demonstrated that the immunostimulatory properties of these particular designs can be tuned to elicit the desired immune response or lack thereof. To advance the current understanding of the nanoparticle properties that contribute to the observed immunomodulatory activity and establish corresponding designing principles, quantitative structure-activity relationship modeling is conducted. The results demonstrate that molecular weight, together with melting temperature and half-life, strongly predicts the observed immunomodulatory activity. This framework provides the fundamental guidelines necessary for the development of a new library of nanoparticles with predictable immunomodulatory activity.


Assuntos
Imunomodulação , Microglia/citologia , Ácidos Nucleicos/química , Relação Quantitativa Estrutura-Atividade , Linhagem Celular Tumoral , DNA/química , Humanos , RNA/química , Reprodutibilidade dos Testes
13.
ACS Nano ; 11(10): 9701-9710, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28841287

RESUMO

Nucleic acid nanoparticles (NANPs) are an emerging class of programmable structures with tunable shape and function. Their promise as tools for fundamental biophysics studies, molecular sensing, and therapeutic applications necessitates methods for their detection and characterization at the single-particle level. In this work, we study electrophoretic transport of individual ring-shaped and cube-shaped NANPs through solid-state nanopores. In the optimal nanopore size range, the particles must deform to pass through, which considerably increases their residence time within the pore. Such anomalously long residence times permit detection of picomolar amounts of NANPs when nanopore measurements are carried out at a high transmembrane bias. In the case of a NANP mixture, the type of individual particle passing through nanopores can be efficiently determined from analysis of a single electrical pulse. Molecular dynamics simulations provide insight into the mechanical barrier to transport of the NANPs and corroborate the difference in the signal amplitudes observed for the two types of particles. Our study serves as a basis for label-free analysis of soft programmable-shape nanoparticles.


Assuntos
DNA/química , Nanopartículas/química , Nanoporos , RNA/química , Simulação de Dinâmica Molecular , Tamanho da Partícula , RNA/síntese química
14.
Nucleic Acids Res ; 45(4): 2210-2220, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28108656

RESUMO

We introduce a new concept that utilizes cognate nucleic acid nanoparticles which are fully complementary and functionally-interdependent to each other. In the described approach, the physical interaction between sets of designed nanoparticles initiates a rapid isothermal shape change which triggers the activation of multiple functionalities and biological pathways including transcription, energy transfer, functional aptamers and RNA interference. The individual nanoparticles are not active and have controllable kinetics of re-association and fine-tunable chemical and thermodynamic stabilities. Computational algorithms were developed to accurately predict melting temperatures of nanoparticles of various compositions and trace the process of their re-association in silico. Additionally, tunable immunostimulatory properties of described nanoparticles suggest that the particles that do not induce pro-inflammatory cytokines and high levels of interferons can be used as scaffolds to carry therapeutic oligonucleotides, while particles with strong interferon and mild pro-inflammatory cytokine induction may qualify as vaccine adjuvants. The presented concept provides a simple, cost-effective and straightforward model for the development of combinatorial regulation of biological processes in nucleic acid nanotechnology.


Assuntos
Nanopartículas/química , Ácidos Nucleicos/química , Aptâmeros de Nucleotídeos , Linhagem Celular Tumoral , Citocinas/metabolismo , DNA/química , DNA/genética , DNA/imunologia , Humanos , Imageamento Tridimensional , Leucócitos Mononucleares/metabolismo , Microscopia de Força Atômica , Modelos Moleculares , Nanotecnologia , Conformação de Ácido Nucleico , Ácidos Nucleicos/genética , Ácidos Nucleicos/imunologia , Oligonucleotídeos/química , Oligonucleotídeos/imunologia , RNA/química , RNA/genética , RNA/imunologia , Interferência de RNA , Termodinâmica , Transcrição Gênica , Transfecção
15.
Sci Rep ; 6: 38319, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924833

RESUMO

Members of the transforming growth factor beta (TGFß) cytokine family have long been associated with affecting several cellular functions, including cell proliferation, differentiation and extracellular matrix (ECM) turnover. Of particular interest to this work, TGFß2 has been linked to most types of glaucomas as a potential fibrotic agent that can cause elevation of intraocular pressure (IOP). Given that the trabecular meshwork (TM) provides most of aqueous humor outflow resistance in the eye, an in vitro bioengineered human TM (HTM) model has been created and validated by analyzing effects of TGFß2 on transcellular pressure changes and outflow facility. These changes were correlated with several biological alterations induced by this cytokine, including ECM production and overexpression of HTM-marker myocillin. Furthermore, this TM model has been used to extend current knowledge of gene expression of cytokines involved in TGFß-induced ECM turnover over time. In particular, the ability for a ROCK-inhibitor to diminish the effect of TGFß on TM was demonstrated. This work supports the notion that anti-fibrotic activities of ROCK-inhibitors could counteract the elevation of IOP and increased strain observed in glaucomatous TM.


Assuntos
Amidas/farmacologia , Piridinas/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Actinas/genética , Actinas/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Compostos de Epóxi/química , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Pressão Intraocular/fisiologia , Modelos Biológicos , Perfusão , Polímeros/química , Transdução de Sinais , Técnicas de Cultura de Tecidos , Malha Trabecular/citologia , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
16.
Biotechnol Bioeng ; 113(6): 1357-68, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26615056

RESUMO

Intraocular pressure (IOP) is mostly regulated by aqueous humor outflow through the human trabecular meshwork (HTM) and represents the only modifiable risk factor of glaucoma. The lack of IOP-modulating therapeutics that targets HTM underscores the need of engineering HTM for understanding the outflow physiology and glaucoma pathology in vitro. Using a 3D HTM model that allows for regulation of outflow in response to a pharmacologic steroid, a fibrotic state has been induced resembling that of glaucomatous HTM. This disease model exhibits HTM marker expression, ECM overproduction, impaired HTM cell phagocytic activity and outflow resistance, which represent characteristics found in steroid-induced glaucoma. In particular, steroid-induced ECM alterations in the glaucomatous model can be modified by a ROCK inhibitor. Altogether, this work presents a novel in vitro disease model that allows for physiological and pathological studies pertaining to regulating outflow, leading to improved understanding of steroid-induced glaucoma and accelerated discovery of new therapeutic targets. Biotechnol. Bioeng. 2016;113: 1357-1368. © 2015 Wiley Periodicals, Inc.


Assuntos
Modelos Animais de Doenças , Glaucoma/patologia , Técnicas de Cultura de Órgãos/métodos , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Malha Trabecular/patologia , Animais , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Impressão Tridimensional , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...