Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(6): e0312622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36346243

RESUMO

Pectobacterium carotovorum is an economically important phytopathogen and has been identified as the major causative agent of bacterial soft rot in carrots. Control of this phytopathogen is vital to minimizing carrot harvest losses. As fully efficient control measures to successfully avoid the disease are unavailable, the phage-mediated biocontrol of the pathogen has recently gained scientific attention. In this study, we present a comprehensive characterization of the P. carotovorum phage vB_PcaM_P7_Pc (abbreviated as P7_Pc) that was isolated from infected carrot samples with characteristic soft rot symptoms, which were obtained from storage facilities at market places in Gampaha District, Sri Lanka. P7_Pc is a myovirus, and it exhibits growth characteristics of an exclusively lytic life cycle. It showed visible lysis against four of the tested P. carotovorum strains and one Pectobacterium aroidearum strain. This phage also showed a longer latent period (125 min) than other related phages; however, this did not affect its high phage titter (>1010 PFU/mL). The final assembled genome of P7_Pc is 147,299 bp in length with a G+C content of 50.34%. Of the 298 predicted open reading frames (ORFs) of the genome of P7_Pc, putative functions were assigned to 53 ORFs. Seven tRNA-coding genes were predicted in the genome, while the genome lacked any major genes coding for lysogeny-related products, confirming its virulent nature. The P7_Pc genome shares 96.12% and 95.74% average nucleotide identities with Cronobacter phages CR8 and PBES02, respectively. Phylogenetic and phylogenomic analyses of the genome revealed that P7_Pc clusters well within the clade with the members representing the genus Certrevirus. Currently, there are only 4 characterized Pectobacterium phages (P. atrosepticum phages phiTE and CB7 and Pectobacterium phages DU_PP_I and DU_PP_IV) that are classified under the genus, making the phage P7_Pc the first reported member of the genus isolated using the host bacterium P. carotovorum. The results of this study provide a detailed characterization of the phage P7_Pc, enabling its careful classification into the genus Certrevirus. The knowledge gathered on the phage based on the shared biology of the genus will further aid in the future selection of phage P7_Pc as a biocontrol agent. IMPORTANCE Bacterial soft rot disease, caused by Pectobacterium spp., can lead to significant losses in carrot yields. As current control measures involving the use of chemicals or antibiotics are not recommended in many countries, bacteriophage-mediated biocontrol strategies are being explored for the successful control of these phytopathogens. The successful implementation of such biocontrol strategies relies heavily upon the proper understanding of the growth characteristics and genomic properties of the phage. Further, the selection of taxonomically different phages for the formulation of phage cocktails in biocontrol applications is critical to combat potential bacterial resistance development. This study was conducted to carefully characterize and resolve the phylogenetic placement of the P. carotovorum phage vB_PcaM_P7_Pc by using its biological and genomic properties. Phage P7_Pc has a myovirus morphotype with an exclusively lytic life cycle, and the absence of genes related to lysogeny, toxin production, and antibiotic resistance in its genome confirmed its suitability to be used in environmental applications. Furthermore, P7_Pc is classified under the genus Certrevirus, making it the first reported phage of the genus of the host species, P. carotovorum.


Assuntos
Bacteriófagos , Pectobacterium carotovorum/genética , Filogenia , Myoviridae/genética , Genômica
2.
Pol J Microbiol ; 71(2): 191-204, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35676828

RESUMO

Exploring untapped microbial potentials in previously uncharted environments has become crucial in discovering novel secondary metabolites and enzymes for biotechnological applications. Among prokaryotes, actinomycetes are well recognized for producing a vast range of secondary metabolites and extracellular enzymes. In the present study, we have used surface sediments from 'Kadolkele' mangrove ecosystem located in the Negombo lagoon area, Sri Lanka, to isolate actinomycetes with bioactive potentials. A total of six actinomycetes were isolated on modified-starch casein agar and characterized. The isolates were evaluated for their antibacterial activity against four selected bacterial strains and to produce extracellular enzymes: cellulase, amylase, protease, and lipase. Three out of the six isolates exhibited antibacterial activity against Staphylococcus aureus, Escherichia coli, and Bacillus cereus, but not against Listeria monocytogenes. Five strains could produce extracellular cellulase, while all six isolates exhibited amylase activity. Only three of the six isolates were positive for protease and lipase assays separately. Ac-1, Ac-2, and Ac-9, identified as Streptomyces spp. with the 16S rRNA gene sequencing, were used for pigment extraction using four different solvents. Acetone-extracted crude pigments of Ac-1 and Ac-2 were further used in well-diffusion assays, and growth inhibition of test bacteria was observed only with the crude pigment extract of Ac-2. Further, six different commercially available fabrics were dyed with crude pigments of Ac-1. The dyed fabrics retained the yellow color after acid, alkaline, and cold-water treatments suggesting the potential of the Ac-1 pigment to be used in biotechnological applications.


Assuntos
Actinobacteria , Celulases , Streptomyces , Actinomyces/genética , Actinomyces/metabolismo , Amilases/genética , Amilases/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Celulases/metabolismo , Ecossistema , Escherichia coli/genética , Lipase/genética , Lipase/metabolismo , Peptídeo Hidrolases/genética , Filogenia , RNA Ribossômico 16S/genética , Sri Lanka , Streptomyces/genética
3.
Can J Microbiol ; 67(2): 147-160, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32905709

RESUMO

Mesorhizobium phage vB_MloS_Cp1R7A-A1 was isolated from soil planted with chickpea in Saskatchewan. It is dissimilar in sequence and morphology to previously described rhizobiophages. It is a B3 morphotype virus with a distinct prolate capsid and belongs to the tailed phage family Siphoviridae. Its genome has a GC content of 60.3% and 238 predicted genes. Putative functions were predicted for 57 genes, which include 27 tRNA genes with anticodons corresponding to 18 amino acids. This represents the highest number of tRNA genes reported yet in a rhizobiophage. The gene arrangement shows a partially modular organization. Most of the structural genes are found in one module, whereas tRNA genes are in another. Genes for replication, recombination, and nucleotide metabolism form the third module. The arrangement of the replication module resembles the replication module of Enterobacteria phage T5, raising the possibility that it uses a recombination-based replication mechanism, but there is also a suggestion that a T7-like replication mechanism could be used. Phage termini appear to be long direct repeats of just over 12 kb in length. Phylogenetic analysis revealed that Cp1R7A-A1 is more closely related to PhiCbK-like Caulobacter phages and other B3 morphotype phages than to other rhizobiophages sequenced thus far.


Assuntos
Bacteriófagos/isolamento & purificação , Capsídeo/ultraestrutura , Mesorhizobium/virologia , Fosmet , Siphoviridae/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Caulobacter crescentus/virologia , Genes Virais/genética , Genoma Viral/genética , Filogenia , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/ultraestrutura , Especificidade da Espécie
4.
Mol Genet Genomics ; 291(1): 349-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26377943

RESUMO

Bacteriophages may play an important role in regulating population size and diversity of the root nodule symbiont Rhizobium leguminosarum, as well as participating in horizontal gene transfer. Although phages that infect this species have been isolated in the past, our knowledge of their molecular biology, and especially of genome composition, is extremely limited, and this lack of information impacts on the ability to assess phage population dynamics and limits potential agricultural applications of rhizobiophages. To help address this deficit in available sequence and biological information, the complete genome sequence of the Myoviridae temperate phage PPF1 that infects R. leguminosarum biovar viciae strain F1 was determined. The genome is 54,506 bp in length with an average G+C content of 61.9 %. The genome contains 94 putative open reading frames (ORFs) and 74.5 % of these predicted ORFs share homology at the protein level with previously reported sequences in the database. However, putative functions could only be assigned to 25.5 % (24 ORFs) of the predicted genes. PPF1 was capable of efficiently lysogenizing its rhizobial host R. leguminosarum F1. The site-specific recombination system of the phage targets an integration site that lies within a putative tRNA-Pro (CGG) gene in R. leguminosarum F1. Upon integration, the phage is capable of restoring the disrupted tRNA gene, owing to the 50 bp homologous sequence (att core region) it shares with its rhizobial host genome. Phage PPF1 is the first temperate phage infecting members of the genus Rhizobium for which a complete genome sequence, as well as other biological data such as the integration site, is available.


Assuntos
Bacteriófagos/genética , DNA Viral/genética , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/virologia , Proteínas Virais/genética , Composição de Bases/genética , Sequência de Bases , Genoma Viral/genética , Lisogenia/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , RNA de Transferência/genética , Análise de Sequência de DNA/métodos , Homologia de Sequência
5.
Microbiology (Reading) ; 161(Pt 3): 611-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25627439

RESUMO

The phage P106B (vB_RglS_P106B) is a Siphoviridae phage with a narrow spectrum of infectivity, which has been isolated from soils with a history of pea cultivation. The trapping host of P106B is an indigenous strain of Rhizobium gallicum (SO14B-4) isolated from soils associated with Vicia cracca. Phenotypic characterization of the phage revealed that P106B has an approximate burst size of 21 p.f.u. per infected cell with 60 min and 100 min eclipse and latent periods, respectively. Phage P106B was unable to transduce under the conditions tested. The genome of P106B is 56 024 bp in length with a mean DNA G+C content of 47.9 %. The complete genome sequence contains 95 putative ORFs and a single tRNA gene coding for leucine with the anticodon TTA. Putative functions could only be assigned to 22 of the predicted ORFs while a significant number of ORFs (47) shared no sequence similarities to previously characterized proteins. The remaining 26 putative protein-coding genes exhibited a sequence resemblance to other hypothetical proteins. No lysogeny-related genes were found in the P106B genome.


Assuntos
Bacteriófagos/isolamento & purificação , Genoma Viral , Rhizobium/virologia , Siphoviridae/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , Composição de Bases , Genômica , Lisogenia , Fenótipo , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/fisiologia , Microbiologia do Solo , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...