Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0079523, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902401

RESUMO

IMPORTANCE: African swine fever virus (ASFV), the only known DNA arbovirus, is the causative agent of African swine fever (ASF), an acutely contagious disease in pigs. ASF has recently become a crisis in the pig industry in recent years, but there are no commercially available vaccines. Studying the immune evasion mechanisms of ASFV proteins is important for the understanding the pathogenesis of ASFV and essential information for the development of an effective live-attenuated ASFV vaccines. Here, we identified ASFV B175L, previously uncharacterized proteins that inhibit type I interferon signaling by targeting STING and 2'3'-cGAMP. The conserved B175L-zf-FCS motif specifically interacted with both cGAMP and the R238 and Y240 amino acids of STING. Consequently, this interaction interferes with the interaction of cGAMP and STING, thereby inhibiting downstream signaling of IFN-mediated antiviral responses. This novel mechanism of B175L opens a new avenue as one of the ASFV virulent genes that can contribute to the advancement of ASFV live-attenuated vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Proteínas de Membrana , Nucleotídeos Cíclicos , Suínos , Proteínas Virais , Animais , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/patogenicidade , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/antagonistas & inibidores , Nucleotídeos Cíclicos/metabolismo , Suínos/imunologia , Suínos/virologia , Vacinas Atenuadas/imunologia , Proteínas Virais/metabolismo , Vacinas Virais/imunologia , Interações entre Hospedeiro e Microrganismos
2.
Viruses ; 15(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37376674

RESUMO

This study investigated the antiviral activity of aqueous leaf extract of Costus speciosus (TB100) against influenza A. Pretreatment of TB100 in RAW264.7 cells enhanced antiviral activity in an assay using the green fluorescence-expressing influenza A/Puerto Rico/8/1934 (H1N1) virus. The fifty percent effective concentration (EC50) and fifty percent cytotoxic concentration (CC50) were determined to be 15.19 ± 0.61 and 117.12 ± 18.31 µg/mL, respectively, for RAW264.7 cells. Based on fluorescent microscopy, green fluorescence protein (GFP) expression and viral copy number reduction confirmed that TB100 inhibited viral replication in murine RAW264.7 and human A549 and HEp2 cells. In vitro pretreatment with TB100 induced the phosphorylation of transcriptional activators TBK1, IRF3, STAT1, IKB-α, and p65 associated with interferon pathways, indicating the activation of antiviral defenses. The safety and protective efficacy of TB100 were assessed in BALB/c mice as an oral treatment and the results confirmed that it was safe and effective against influenza A/Puerto Rico/8/1934 (H1N1), A/Philippines/2/2008 (H3N2), and A/Chicken/Korea/116/2004 (H9N2). High-performance liquid chromatography of aqueous extracts led to the identification of cinnamic, caffeic, and chlorogenic acids as potential chemicals for antiviral responses. Further confirmatory studies using these acids revealed that each of them confers significant antiviral effects against influenza when used as pretreatment and enhances the antiviral response in a time-dependent manner. These findings suggest that TB100 has the potential to be developed into an antiviral agent that is effective against seasonal influenza.


Assuntos
Costus , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Plantas Medicinais , Humanos , Animais , Camundongos , Plantas Medicinais/química , Influenza Humana/tratamento farmacológico , Vírus da Influenza A Subtipo H3N2 , Antivirais/uso terapêutico , Extratos Vegetais/química , Replicação Viral
3.
J Virol ; 96(15): e0102222, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35861515

RESUMO

African swine fever virus (ASFV) is a highly pathogenic swine DNA virus with high mortality that causes African swine fever (ASF) in domestic pigs and wild boars. For efficient viral infection, ASFV has developed complex strategies to evade key components of antiviral innate immune responses. However, the immune escape mechanism of ASFV remains unclear. Upon ASFV infection, cyclic GMP-AMP (2',3'-cGAMP) synthase (cGAS), a cytosolic DNA sensor, recognizes ASFV DNA and synthesizes the second messenger 2',3'-cGAMP, which triggers interferon (IFN) production to interfere with viral replication. In this study, we demonstrated a novel immune evasion mechanism of ASFV EP364R and C129R, which blocks cellular cyclic 2',3'-cGAMP-mediated antiviral responses. ASFV EP364R and C129R with nuclease homology inhibit IFN-mediated responses by specifically interacting with 2',3'-cGAMP and exerting their phosphodiesterase (PDE) activity to cleave 2',3'-cGAMP. Particularly notable is that ASFV EP364R had a region of homology with the stimulator of interferon genes (STING) protein containing a 2',3'-cGAMP-binding motif and point mutations in the Y76S and N78A amino acids of EP364R that impaired interaction with 2',3'-cGAMP and restored subsequent antiviral responses. These results highlight a critical role for ASFV EP364R and C129R in the inhibition of IFN responses and could be used to develop ASFV live attenuated vaccines. IMPORTANCE African swine fever (ASF) is a highly contagious hemorrhagic disease in domestic pigs and wild boars caused by African swine fever virus (ASFV). ASF is a deadly epidemic disease in the global pig industry, but no drugs or vaccines are available. Understanding the pathogenesis of ASFV is essential to developing an effective live attenuated ASFV vaccine, and investigating the immune evasion mechanisms of ASFV is crucial to improve the understanding of its pathogenesis. In this study, for the first time, we identified the EP364R and C129R, uncharacterized proteins that inhibit type I interferon signaling. ASFV EP364R and C129R specifically interacted with 2',3'-cGAMP, the mammalian second messenger, and exerted phosphodiesterase activity to cleave 2',3'-cGAMP. In this study, we discovered a novel mechanism by which ASFV inhibits IFN-mediated antiviral responses, and our findings can guide the understanding of ASFV pathogenesis and the development of live attenuated ASFV vaccines.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Vírus da Febre Suína Africana , Evasão da Resposta Imune , Proteínas de Membrana , Nucleotídeos Cíclicos , Nucleotidiltransferases , Transdução de Sinais , Proteínas Virais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/metabolismo , Animais , Interferons/antagonistas & inibidores , Interferons/imunologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/imunologia , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Sus scrofa/virologia , Suínos , Vacinas Atenuadas , Proteínas Virais/metabolismo , Vacinas Virais
4.
Vaccines (Basel) ; 9(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34696199

RESUMO

Foot-and-mouth disease (FMD) is a notifiable contagious disease of cloven-hoofed mammals. A high potency vaccine that stimulates the host immune response is the foremost strategy used to prevent disease persistence in endemic regions. FMD vaccines comprise inactivated virus antigens whose immunogenicity is potentiated by immunogenic adjuvants. Oil-based adjuvants have clear advantages over traditional adjuvant vaccines; however, there is potential to develop novel adjuvants to increase the potency of FMD vaccines. Thus, we aimed to evaluate the efficacy of a novel water-in-oil emulsion, called CAvant®SOE, as a novel vaccine adjuvant for use with inactivated FMD vaccines. In this study, we found that inactivated A22 Iraq virus plus CAvant®SOE (iA22 Iraq-CAvant®SOE) induced effective antigen-specific humoral (IgG, IgG1, and IgG2a) and cell-mediated immune responses (IFN-γ and IL-4) in mice. Immunization of pigs with a single dose of iA22 Iraq-CAvant®SOE also elicited effective protection, with no detectable clinical symptoms against challenge with heterologous A/SKR/GP/2018 FMDV. Levels of protection are strongly in line with vaccine-induced neutralizing antibody titers. Collectively, these results indicate that CAvant®SOE-adjuvanted vaccine is a promising candidate for control of FMD in pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...