Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 14(5): 2305-9, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24758307

RESUMO

Understanding the influence of different film structures on electron diffusion in nanoporous metal oxide films has been challenging. Because of the rate-limiting role that traps play in controlling the transport properties, the structural effects of different film architectures are largely obscured or reduced. We describe a general approach to probe the impact of structural order and disorder on the charge-carrier dynamics without the interference of transport-limiting traps. As an illustration of this approach, we explore the consequences of trap-free diffusion in vertically aligned nanotube structures and random nanoparticle networks in sensitized titanium dioxide solar cells. Values of the electron diffusion coefficients in the nanotubes approached those observed for the single crystal and were up to 2 orders of magnitude greater than those measured for nanoparticle films with various average crystallites sizes. Transport measurements together with modeling show that electron scattering at grain boundaries in particle networks limits trap-free diffusion. In presence of traps, transport was 10(3)-10(5) times slower in nanoparticle films than in the single crystal. Understanding the link between structure and carrier dynamics is important for systematically altering and eventually controlling the electronic properties of nanoscaled materials.

2.
Nano Lett ; 12(4): 2112-6, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22428871

RESUMO

This study addresses a long-standing controversy about the electron-transport mechanism in porous metal oxide semiconductor films that are commonly used in dye-sensitized solar cells and related systems. We investigated, by temperature-dependent time-of-flight measurements, the influence of proton intercalation on the electron-transport properties of nanoporous TiO(2) films exposed to an ethanol electrolyte containing different percentages of water (0-10%). These measurements revealed that increasing the water content in the electrolyte led to increased proton intercalation into the TiO(2) films, slower transport, and a dramatic change in the dependence of the thermal activation energy (E(a)) of the electron diffusion coefficient on the photogenerated electron density in the films. Random walk simulations based on a microscopic model incorporating exponential conduction band tail (CBT) trap states combined with a proton-induced shallow trap level with a long residence time accounted for the observed effects of proton intercalation on E(a). Application of this model to the experimental results explains the conditions under which E(a) dependence on the photoelectron density is consistent with multiple trapping in exponential CBT states and under which it appears at variance with this model.

3.
ACS Nano ; 5(4): 2647-56, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21395234

RESUMO

We report on the preparation of transparent oriented titania nanotube (NT) photoelectrodes and the effect of illumination direction on light harvesting, electron transport, and recombination in dye-sensitized solar cells (DSSCs) incorporating these electrodes. High solar conversion efficiency requires that the incident light enters the cell from the photoelectrode side. However, it has been synthetically challenging to prepare transparent TiO(2) NT electrodes by directly anodizing Ti metal films on transparent conducting oxide (TCO) substrates because of the difficulties of controlling the synthetic conditions. We describe a general synthetic strategy for fabricating transparent TiO(2) NT films on TCO substrates. With the aid of a conducting Nb-doped TiO(2) (NTO) layer between the Ti film and TCO substrate, the Ti film was anodized completely without degrading the TCO. The NTO layer was found to protect the TCO from degradation through a self-terminating mechanism by arresting the electric field-assisted dissolution process at the NT-NTO interface. The illumination direction and wavelength of the light incident on the DSSCs were shown to strongly influence the incident photon-to-current conversion efficiency, light-harvesting, and charge-collection properties, which, in turn, affect the photocurrent density, photovoltage, and solar energy conversion efficiency. Effects of NT film thickness on the properties and performance of DSSCs were also examined. Illuminating the cell from the photoelectrode substantially increased the conversion efficiency compared with illuminating it from the counter-electrode side.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...