Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnol Sci Appl ; 16: 59-72, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146545

RESUMO

Purpose: Antimicrobial resistance is a major health hazard worldwide. Combining azithromycin (AZ) and ciprofloxacin (CIP) in one drug delivery system was proposed to boost their antibacterial activity and overcome resistance. This study aims to improve azithromycin and ciprofloxacin activity by co-encapsulating them inside chitosan-coated polymeric nanoparticles and evaluating their antibacterial activity. Methods: The double emulsion method was employed to co-encapsulate AZ/CIP inside chitosan-coated polymeric nanoparticles. The formulations were evaluated for their nanoparticle size, size distribution, and zeta potential. Differential scanning calorimetry (DSC) analysis characterized the formula's thermal sustainability. Encapsulation efficiency was measured by HPLC and spectrophotometric analysis. Morphological studies used the Transmission Electron Microscopy (TEM). The in vitro release profiles of both AZ and CIP were monitored utilizing the dialysis membrane bag method. The micro-dilution assay assessed the antimicrobial activity against a clinical isolate of Klebsiella pneumoniae. Results: The prepared AZ/CIP-poly-caprolactone nanoparticles were spherical; their size range was 184.0 ± 3.3-190.4 ± 5.6 nm and had high size uniformity (poly-dispersity index below 0.2). The zeta potential ranged from -21.2 ± 2.4 to -27.0 ± 2.5 mV, while chitosan-coated nanoparticles showed a positive zeta potential value ranging from 8 to 11 mV. The thermal study confirmed the amorphous state of both antibiotics inside the nanoparticles. The results of the in vitro release study indicated a slow and uniform rate of release for both drugs extended over 4-days, with a faster rate in the case of AZ. The MIC values reported for both chitosan-coated NP have been tremendously reduced by at least 15 folds of pure CIP and more than 60 folds of pure AZ. Conclusion: The co-encapsulation of AZ/CIP into chitosan-coated polymeric nanoparticles has been successfully achieved. The produced particles showed many beneficial attributes of uniform particle sizes below 200 nm and high zeta potential values. Chitosan-coated polymeric nanoparticles extensively enhanced the antibacterial activity of both AZ/CIP against bacteria.

2.
Medicina (Kaunas) ; 59(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37241122

RESUMO

Background and Objective: Cisplatin is a chemotherapy drug used to treat several types of malignancies. It is a platinum-based compound that interferes with cell division and DNA replication. Cisplatin has been associated with renal damage. This study evaluates the early detection of nephrotoxicity through routine laboratory tests. Materials and Methods: This is a retrospective chart review based on the Saudi Ministry of National Guard Hospital (MNGHA). We evaluated deferential laboratory tests for cancer patients treated with cisplatin between April 2015 and July 2019. The evaluation included age, sex, WBC, platelets, electrolytes, co-morbidities and interaction with radiology. Results: The review qualified 254 patients for evaluation. Around 29 patients (11.5%) had developed kidney function abnormality. These patients presented with abnormally low magnesium 9 (31%), potassium 6 (20.7%), sodium 19 (65.5%) and calcium 20 (69%). Interestingly, the whole sample size had abnormal electrolytes presenting magnesium 78 (30.8%), potassium 30 (11.9%), sodium 147 (58.1%) and calcium 106 (41.9%). Some pathological features were detected, such as hypomagnesemia, hypocalcemia and hypokalemia. In addition, infections that needed antibiotics were dominant in patients treated with cisplatin alone, representing 50% of this group. Conclusions: We report that an average of 15% of patients with electrolyte abnormalities develop renal toxicity and reduced function. Moreover, electrolytes may serve as an early indicator for renal damage as part of chemotherapy complication. This indication represents 15% of renal toxicity cases. Changes in electrolyte levels have been reported with cisplatin. Specifically, it has been linked to hypomagnesemia, hypocalcemia and hypokalemia. This study will help reduce the risk of dialysis or the need for kidney transplant. It is also important to manage any underlying conditions and control patients' intake of electrolytes.


Assuntos
Hipocalcemia , Hipopotassemia , Neoplasias , Humanos , Cisplatino/efeitos adversos , Hipocalcemia/induzido quimicamente , Hipocalcemia/complicações , Estudos Retrospectivos , Magnésio , Hipopotassemia/induzido quimicamente , Cálcio , Diálise Renal/efeitos adversos , Rim , Eletrólitos/uso terapêutico , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Sódio , Potássio
3.
Infect Drug Resist ; 16: 19-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36636380

RESUMO

The continuous emergence of multidrug-resistant pathogens evoked the development of innovative approaches targeting virulence factors unique to their pathogenic cascade. These approaches aimed to explore anti-virulence or anti-infective therapies. There are evident concerns regarding the bacterial ability to create a superstructure, the biofilm. Biofilm formation is a crucial virulence factor causing difficult-to-treat, localized, and systemic infections. The microenvironments of bacterial biofilm reduce the efficacy of antibiotics and evade the host's immunity. Producing a biofilm is not limited to a specific group of bacteria; however, Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus biofilms are exemplary models. This review discusses biofilm formation as a virulence factor and the link to antimicrobial resistance. In addition, it explores insights into innovative multi-targeted approaches and their physiological mechanisms to combat biofilms, including natural compounds, phages, antimicrobial photodynamic therapy (aPDT), CRISPR-Cas gene editing, and nano-mediated techniques.

4.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38256853

RESUMO

Valsartan (Val) is an important antihypertensive medication with poor absorption and low oral bioavailability. These constraints are due to its poor solubility and dissolution rate. The purpose of this study was to optimize a mixed micelle system for the transdermal delivery of Val in order to improve its therapeutic performance by providing prolonged uniform drug levels while minimizing drug side effects. Thin-film hydration and micro-phase separation were used to produce Val-loaded mixed micelle systems. A variety of factors, including the surfactant type and drug-to-surfactant ratio, were optimized to produce micelles with a low size and high Val entrapment efficiency (EE). The size, polydispersity index (PDI), zeta potential, and drug EE of the prepared micelles were all measured. The in vitro drug release profiles were assessed using dialysis bags, and the permeation through abdominal rat skin was assessed using a Franz diffusion cell. All formulations had high EE levels exceeding 90% and low particle charges. The micellar sizes ranged from 107.6 to 191.7 nm, with average PDI values of 0.3. The in vitro release demonstrated a uniform slow rate that lasted one week with varying extents. F7 demonstrated a significant (p < 0.01) transdermal efflux of 68.84 ± 3.96 µg/cm2/h through rat skin when compared to the control. As a result, the enhancement factor was 16.57. In summary, Val-loaded mixed micelles were successfully prepared using two simple methods with high reproducibility, and extensive transdermal delivery was demonstrated in the absence of any aggressive skin-modifying enhancers.

5.
Saudi J Biol Sci ; 29(2): 816-821, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197749

RESUMO

All active natural molecules are not fully exploited as therapeutic agents, causing delays in the advancement of anticancer drug discovery. Viridiflorol is a natural volatile element that may work as anti-cancer compound. We tested the anticancer properties of viridiflorol at different concentrations ranging from 0.03 to 300 µM in vitro on three cancer cells including breast (MCF-7), lung (A549) and brain (Daoy). The cancer cells responses were documented after treatment using MTT and Annexin V assays. Viridiflorol showed cytotoxic effects against all tested cell lines, reducing cell viability in a concentration-dependent manner with variable IC50 values. Daoy and A549 cell lines were more sensitive to viridiflorol when compared with temozolomide and doxorubicin, respectively. Viridiflorol demonstrated the highest anticancer activity against the Daoy cells with an estimated IC50 of 0.1 µM followed by MCF-7 at 10 µM, and A549 at 30 µM. In addition, upon exposure to concentrations ranging from 30 µM to 300 µM of viridiflorol, early and late apoptotic cell death was induced in a concentration dependent manner in Daoy (55.8%-72.1%), MCF-7 (36.2%-72.7%) and A459 (35%-98.9%) cell lines, respectively. In conclusion, viridiflorol demonstrates cytotoxic and apoptotic ability in three different cancer cell lines (brain, breast and lung).

6.
Pharmaceutics ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35057026

RESUMO

The antibacterial activity and biofilm reduction capability of liposome formulations encapsulating tobramycin (TL), and Tobramycin-N-acetylcysteine (TNL) were tested against tobramycin-resistant strains of E. coli, K. pneumoniae and A. baumannii in the presence of several resistant genes. All antibacterial activity were assessed against tobramycin-resistant bacterial clinical isolate strains, which were fully characterized by whole-genome sequencing (WGS). All isolates acquired one or more of AMEs genes, efflux pump genes, OMP genes, and biofilm formation genes. TL formulation inhibited the growth of EC_089 and KP_002 isolates from 64 mg/L and 1024 mg/L to 8 mg/L. TNL formulation reduced the MIC of the same isolates to 16 mg/L. TNL formulation was the only effective formulation against all A. baumannii strains compared with TL and conventional tobramycin (in the plektonic environment). Biofilm reduction was significantly observed when TL and TNL formulations were used against E. coli and K. pneumoniae strains. TNL formulation reduced biofilm formation at a low concentration of 16 mg/L compared with TL and conventional tobramycin. In conclusion, TL and TNL formulations particularly need to be tested on animal models, where they may pave the way to considering drug delivery for the treatment of serious infectious diseases.

7.
Molecules ; 26(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670315

RESUMO

Arabian flora is a rich source of bioactive compounds. In this study, we investigated three aromatic plant species with the aim of finding valuable sources of antimicrobial agents against common pathogenic microorganisms. We focused especially on microorganisms, which cause outbreaks of infectious disease during mass gatherings and pilgrimages season in Saudi Arabia. The essential oils of three aromatic plant species were hydrodistilled from flowering aerial parts of Lavandula pubescens Decne. and Pulicaria incisa subsp. candolleana E.Gamal-Eldin, and from leaves, stems, ripe and unripe fruits of Juniperus procera Hochst. Ex Endl. They were subsequently analyzed by gas chromatography-mass spectrometry (GC-MS). The main constituents of L. pubescens were found to be carvacrol (55.7%), methyl carvacrol (13.4%), and ß-bisabolene (9.1%). P. incisa subsp. Candolleana essential oil was rich in linalool (33.0%), chrysanthenone (10.3%), eugenol (8.9%), and cis-chrysanthenol (8.0%); the major components of J. procera essential oil were α-pinene (31.3-62.5%) and δ-3-carene (7.3-30.3%). These essential oils were tested against thirteen American Type Culture Collection (ATCC) strains of Gram-positive and Gram-negative bacteria using the agar diffusion assay. The only effective essential oil was that of L. pubescens and the most sensitive strains were Acinetobacter baumannii, Salmonella typhimurium, Shigella sonnei, Enterococcus faecalis and Staphylococcus epidermidis. Carvacrol, the major constituent of L. pubescens, was tested on these strains and was compared with vancomycin, amikacin, and ciprofloxacin. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays of L. pubescens essential oil and carvacrol revealed that Gram-negative strains were more susceptible than the Gram-positive ones.


Assuntos
Juniperus/química , Lavandula/química , Óleos Voláteis/química , Óleos de Plantas/química , Pulicaria/química , Antibacterianos/química , Antibacterianos/farmacologia , Cimenos/química , Cimenos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Componentes Aéreos da Planta/química , Folhas de Planta/química , Óleos de Plantas/farmacologia , Arábia Saudita , Staphylococcus aureus/efeitos dos fármacos
8.
Molecules ; 26(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572107

RESUMO

In developing countries, crop deterioration is mainly caused by inappropriate storage conditions that promote insect infestation. Synthetic pesticides are associated with serious adverse effects on humans and the environment. Thus, finding alternative "green" insecticides is a very pressing need. Calotropis procera (Aiton) Dryand (Apocynaceae) growing in Saudi Arabia was selected for this purpose. LC-MS/MS analysis was applied to investigate the metabolic composition of different C. procera extracts. Particularly, C. procera latex and leaves showed a high presence of cardenolides including calactin, uscharidin, 15ß-hydroxy-calactin, 16ß-hydroxy-calactin, and 12ß-hydroxy-calactin. The ovicidal activity of the extracts from different plant organs (flowers, leaves, branches, roots), and of the latex, against Cadra cautella (Walker) (Lepidoptera, Pyralidae) was assessed. Extracts of C. procera roots displayed the most potent activity with 50% of C. cautella eggs not hatching at 10.000 ppm (1%).


Assuntos
Calotropis/química , Óvulo/efeitos dos fármacos , Óvulo/fisiologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Flores/química , Látex/química , Mariposas , Folhas de Planta/química , Raízes de Plantas/química
9.
Polymers (Basel) ; 13(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375759

RESUMO

Currently, chemotherapy is an important method for the treatment of various cancers. Nevertheless, it has many limitations, such as poor tumour selectivity and multi-drug resistance. It is necessary to improve this treatment method by incorporating a targeted drug delivery system aimed to reduce side effects and drug resistance. The present work aims to develop pH-sensitive nanocarriers containing magnetic mesoporous silica nanoparticles (MMSNs) coated with pH-responsive polymers for tumour-targeted drug delivery via the folate receptor. 2-Diethyl amino ethyl methacrylate (DEAEMA) was successfully grafted on MMSNs via surface initiated ARGET atom transfer radical polymerization (ATRP), with an average particle size of 180 nm. The end groups of poly (2-(diethylamino)ethyl methacrylate) (PDEAEMA) brushes were converted to amines, followed by a covalent bond with folic acid (FA) as a targeting agent. FA conjugated to the nanoparticle surface was confirmed by X-ray photoelectron spectroscopy (XPS). pH-Responsive behavior of PDEAEMA brushes was investigated by Dynamic Light Scattering (DLS). The nanoparticles average diameters ranged from ca. 350 nm in basic media to ca. 650 in acidic solution. Multifunctional pH-sensitive magnetic mesoporous nanoparticles were loaded with an anti-cancer drug (Doxorubicin) to investigate their capacity and long-circulation time. In a cumulative release pattern, doxorubicin (DOX) release from nano-systems was ca. 20% when the particle exposed to acidic media, compared to ca. 5% in basic media. The nano-systems have excellent biocompatibility and are minimally toxic when exposed to MCF-7, and -MCF-7 ADR cells.

10.
Polymers (Basel) ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233772

RESUMO

This work presents the synthesis of pH-responsive poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) brushes anchored on hollow mesoporous silica nanoparticles (HMSN-PDEAEMA) via a surface-initiated ARGET ATRP technique. The average size of HMSNs was ca. 340 nm, with a 90 nm mesoporous silica shell. The dry thickness of grafted PDEAEMA brushes was estimated to be ca 30 nm, as estimated by SEM and TEM. The halogen group on the surface of PDEAMA brushes was successfully derivatized with glucosamine, as confirmed by XPS. The effect of pH on the size of the hybrid nanoparticles was investigated by DLS. The size of fabricated nanoparticle decreased from ca. 950 nm in acidic media to ca. 500 nm in basic media due to the deprotonation of tertiary amine in the PDEAEMA. The PDEAEMA modified HMSNs nanocarrier was efficiently loaded with doxorubicin (DOX) with a loading capacity of ca. 64%. DOX was released in a relatively controlled pH-triggered manner from hybrid nanoparticles. The cytotoxicity studies demonstrated that DOX@HMSN-PDEAEMA-Glucosamine showed a strong ability to kill breast cancer cells (MCF-7 and MCF-7/ADR) at low drug concentrations, in comparison to free DOX.

11.
Saudi J Biol Sci ; 27(11): 3065-3071, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33100866

RESUMO

E. coli is an Enterobacteriaceae that could develop resistance to various antibiotics and become a multi-drug resistant (MDR) bacterium. Options for treating MDR E. coli are limited and the pipeline is somewhat dry when it comes to antibiotics for MDR bacteria, so we aimed to explore more options to help in treating MDR E. coli. The purpose of this study is to examine the synergistic effect of a liposomal formulations of co-encapsulated azithromycin and N-acetylcysteine against E. coli. Liposomal azithromycin (LA) and liposomal azithromycin/N-acetylcysteine (LAN) were compared to free azithromycin. A broth dilution was used to measure the MIC and MBC of both formulations. The biofilm reduction activity, thermal stability measurements, stability studies, and cell toxicity analysis were performed. LA and LAN effectively reduced the MIC of E. coli SA10 strain, to 3 µg/ml and 2.5 µg/ml respectively. LAN at 1 × MIC recorded a 93.22% effectiveness in reducing an E. coli SA10 biofilm. The LA and LAN formulations were also structurally stable to 212 ± 2 °C and 198 ± 3 °C, respectively. In biological conditions, the formulations were largely stable in PBS conditions; however, they illustrated limited stability in sputum and plasma. We conclude that the formulation presented could be a promising therapy for E. coli resistance circumstances, providing the stability conditions have been enhanced.

12.
SLAS Technol ; 25(6): 598-607, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32734812

RESUMO

Ciprofloxacin (CIP), a widely used antibiotic, is a poor biopharmaceutical resulting in low bioavailability. We optimized a CIP polymer-lipid hybrid nanoparticle (CIP-PLN) delivery system to enhance its biopharmaceutical attributes and the overall therapeutic performance. CIP-PLN formulations were prepared by a direct emulsification-solvent-evaporation method. Varying the type and ratio of lipid was tried to optimize a CIP-PLN formulation. All the prepared formulations were evaluated for their particle size, polydispersity index, zeta potential, physical stability, and drug entrapment efficiency. The drug in vitro release profile was also studied. Antibacterial activities were tested by the agar diffusion method for all CIP-PLN formulations against an Escherichia coli clinical bacterial isolate (EC04). CIP-PLN formulations showed average sizes in the range of 133.9 ± 1.7 nm to 217.1 ± 0.8 nm, exhibiting high size uniformity as indicated by polydispersity indices lower than 0.25. The entrapment efficiency was close to 80% for all formulations. The differential scanning calorimetry (DSC) thermograms indicated the existence of CIP in the amorphous state in all PLN formulations. Fourier transform infrared spectra indicated deep incorporation of molecular CIP within the polymer matrix. The release profile of CIP from PLN formulas showed a uniform prolonged drug profile, extended for a week from most formulations with a zero-order kinetics. The antibacterial activity of CIP-PLN formulations showed significantly higher antibacterial activity only with F4 containing lecithin as the lipid component. In conclusion, we successfully optimized a CIP-PLN formulation with a low nanoparticle size in a close range, high percentage of entrapment efficiency and drug loading, uniform prolonged release rate, and higher antibacterial activity against the EC04 clinical isolate.


Assuntos
Ciprofloxacina , Nanopartículas , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Lipídeos , Poliésteres
13.
Artigo em Inglês | MEDLINE | ID: mdl-32831876

RESUMO

The prevalence of nosocomial infections due to multidrug resistant (MDR) bacterial strains is associated with high morbidity and mortality. Folk medicine and ethnopharmacological data can provide a broad range of plants with promising antimicrobial activity. Triphala, an Ayurvedic formula composed of three different plants: Terminalia chebula Retz., Terminalia bellirica (Gaertn.) Roxb. (Combretaceae), and Phyllanthus emblica L. (Phyllanthaceae), is used widely for various microbial infections. Various extraction techniques were applied in the extraction of the biologically active constituents of Triphala in order to compare their efficiency. Microwave-assisted extraction (MAE) was shown to be the most efficient method based on yield, extraction time, and selectivity. The Triphala hydroalcoholic extract (TAE) has been chemically characterized with spectroscopic and chromatographic techniques. Triphala hydroalcoholic extract was evaluated alone or with carvacrol. Different drug formulations including cream and nanoemulsion hydrogel were prepared to assess the antimicrobial activity against selected microorganism strains including Gram-positive and Gram-negative bacteria and fungi. We used a lipophilic oil of carvacrol (5 mg/mL) and a hydrophilic TAE (5 mg/mL) ingredient in a dosage form. Two solutions were created: hydrogel containing nanoemulsion as a lipophilic vector dispersed in the gel as a hydrophilic vehicle and a cream formulation, an oil-in-water emulsion. In both cases, the concentration was 250 mg of active ingredient in 50 mL of final formulation. The formulas developed were stable from a physical and chemical perspective. In the nanoemulsion hydrogel, the oil droplet size ranged from 124 to 129 nm, with low polydispersity index (PdI) 0.132 ± 0.013 and negative zeta potential -46.4 ± 4.3 mV. For the cream, the consistency factor (cetyl alcohol and white wax) induced immobilization of the matrix structure and the stability. Triphala hydroalcoholic extract in drug nanoformulation illustrated might be an adjuvant antimicrobial agent for treating various microbial infections.

14.
Anal Cell Pathol (Amst) ; 2019: 1598182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482051

RESUMO

Human hepatocellular carcinoma (HCC) is the most common and recurrent type of primary adult liver cancer without any effective therapy. Plant-derived compounds acting as anticancer agents can induce apoptosis by targeting several signaling pathways. Strigolactone (SL) is a novel class of phytohormone, whose analogues have been reported to possess anticancer properties on a panel of human cancer cell lines through inducing cell cycle arrest, destabilizing microtubular integrity, reducing damaged in the DNA repair machinery, and inducing apoptosis. In our previous study, we reported that a novel SL analogue, TIT3, reduces HepG2 cell proliferation, inhibits cell migration, and induces apoptosis. To decipher the mechanisms of TIT3-induced anticancer activity in HepG2, we performed RNA sequencing and the differential expression of genes was analyzed using different tools. RNA-Seq data showed that the genes responsible for microtubule organization such as TUBB, BUB1B, TUBG2, TUBGCP6, TPX2, and MAP7 were significantly downregulated. Several epigenetic modulators such as UHRF1, HDAC7, and DNMT1 were also considerably downregulated, and this effect was associated with significant upregulation of various proapoptotic genes including CASP3, TNF-α, CASP7, and CDKN1A (p21). Likewise, damaged DNA repair genes such as RAD51, RAD52, and DDB2 were also significantly downregulated. This study indicates that TIT3-induced antiproliferative and proapoptotic activities on HCC cells could involve several signaling pathways. Our results suggest that TIT3 might be a promising drug to treat HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Lactonas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Lactonas/química , Lactonas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
Epigenet Insights ; 11: 2516865718814543, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515476

RESUMO

Natural polyamines such as putrescine, spermidine, and spermine are crucial in the cell proliferation and maintenance in all the eukaryotes. However, the requirement of polyamines in tumor cells is stepped up to maintain tumorigenicity. Many synthetic polyamine analogues have been designed recently to target the polyamine metabolism in tumors to induce apoptosis. N4-Erucoyl spermidine (designed as N4-Eru), a novel acylspermidine derivative, has been shown to exert selective inhibitory effects on both hematological and solid tumors, but its mechanisms of action are unknown. In this study, RNA sequencing was performed to investigate the anticancer mechanisms of N4-Eru-treated T-cell acute lymphoblastic leukemia (ALL) cell line (Jurkat cells), and gene expression was examined through different tools. We could show that many key oncogenes including NDRG1, CACNA1G, TGFBR2, NOTCH1,2,3, UHRF1, DNMT1,3, HDAC1,3, KDM3A, KDM4B, KDM4C, FOS, and SATB1 were downregulated, whereas several tumor suppressor genes such as CDKN2AIPNL, KISS1, DDIT3, TP53I13, PPARG, FOXP1 were upregulated. Data obtained through RNA-Seq further showed that N4-Eru inhibited the NOTCH/Wnt/JAK-STAT axis. This study also indicated that N4-Eru-induced apoptosis could involve several key signaling pathways in cancer. Altogether, our results suggest that N4-Eru is a promising drug to treat ALL.

16.
Bioorg Med Chem Lett ; 28(6): 1077-1083, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29456109

RESUMO

Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Lactonas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Lactonas/síntese química , Lactonas/química , Neoplasias Hepáticas/patologia , Estrutura Molecular , Relação Estrutura-Atividade
17.
Int J Nanomedicine ; 12: 6949-6961, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075113

RESUMO

We investigated the efficacy of liposomal gentamicin formulations of different surface charges against Pseudomonas aeruginosa and Klebsiella oxytoca. The liposomal gentamicin formulations were prepared by the dehydration-rehydration method, and their sizes and zeta potential were measured. Gentamicin encapsulation efficiency inside the liposomal formulations was determined by microbiologic assay, and stability of the formulations in biologic fluid was evaluated for a period of 48 h. The minimum inhibitory concentration and the minimum bactericidal concentration were determined, and the in vitro time kill studies of the free form of gentamicin and liposomal gentamicin formulations were performed. The activities of liposomal gentamicin in preventing and reducing biofilm-forming P. aeruginosa and K. oxytoca were compared to those of free antibiotic. The sizes of the liposomal formulations ranged from 625 to 806.6 nm in diameter, with the zeta potential ranging from -0.22 to -31.7 mV. Gentamicin encapsulation efficiency inside the liposomal formulation ranged from 1.8% to 43.6%. The liposomes retained >60% of their gentamicin content during the 48 h time period. The minimum inhibitory concentration of neutral formulation was lower than that of free gentamicin (0.25 versus 1 mg/L for P. aeruginosa and 0.5 versus 1 mg/L for K. oxytoca). The negatively charged formulation exhibited the same bacteriostatic concentration as that of free gentamicin. The minimum bactericidal concentration of neutral liposomes on planktonic bacterial culture was twofold lower than that of free gentamicin, whereas the negatively charged formulations were comparable to free gentamicin. The killing time curve values for the neutral negatively charged formulation against planktonic P. aeruginosa and K. oxytoca were better than those of free gentamicin. Furthermore, liposomal formulations prevent the biofilm-formation ability of these strains better than free gentamicin. In summary, liposomal formulations could be an effective lipid nanoparticle to combat acute infections where planktonic bacteria are predominant.


Assuntos
Antibacterianos/farmacologia , Gentamicinas/farmacologia , Lipossomos/química , Plâncton/microbiologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Gentamicinas/administração & dosagem , Gentamicinas/química , Humanos , Klebsiella oxytoca/efeitos dos fármacos , Lipossomos/farmacologia , Masculino , Testes de Sensibilidade Microbiana , Nanopartículas , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos
18.
J Antimicrob Chemother ; 70(3): 784-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25416744

RESUMO

OBJECTIVES: This work was carried out to construct a novel liposomal azithromycin formulation and examine its antimicrobial effects against Pseudomonas aeruginosa. METHODS: The liposomal azithromycin formulation was prepared by the dehydration-rehydration vesicle method and its characterizations were tested. The MIC and the MBC of the liposomal formulation were determined by the microbroth dilution method. Liposomal azithromycin activity against biofilm-forming P. aeruginosa was assessed using a Calgary biofilm device. The effect of subinhibitory concentrations of liposomal azithromycin on bacterial virulence factors and motility studies was tested on P. aeruginosa strains. The bacteria and liposome interactions were studied using flow cytometry analysis. The toxicities of the liposomal formulation on erythrocytes and A549 lung cells were evaluated in vitro. RESULTS: The average diameter of the liposomal azithromycin was 406.07 ±â€Š45 nm and the encapsulation efficiency was 23.8% ±â€Š0.2%. The MIC and MBC values of liposomal azithromycin were significantly lower than those of free azithromycin. The liposomal azithromycin significantly reduced the bacteria in the biofilm and attenuated the production of different virulence factors; it also reduced the different patterns of bacterial motilities. By flow cytometry analysis data, it was shown that there are interactions of liposomes with the bacterial membranes. No significant haemolysis or cell toxicity was observed with the liposomal formulation. CONCLUSIONS: The results of this research indicate that this novel liposomal azithromycin formulation could be a useful therapy to enhance the safety and efficacy of azithromycin against P. aeruginosa-infected persons.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Portadores de Fármacos/metabolismo , Lipossomos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/toxicidade , Azitromicina/toxicidade , Linhagem Celular , Portadores de Fármacos/toxicidade , Citometria de Fluxo , Humanos , Lipossomos/toxicidade , Locomoção/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Fatores de Virulência/análise
19.
PLoS One ; 4(5): e5724, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19479000

RESUMO

BACKGROUND: To compare the effectiveness of liposomal tobramycin or polymyxin B against Pseudomonas aeruginosa in the Cystic Fibrosis (CF) sputum and its inhibition by common polyanionic components such as DNA, F-actin, lipopolysaccharides (LPS), and lipoteichoic acid (LTA). METHODOLOGY: Liposomal formulations were prepared from a mixture of 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) or 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC) and Cholesterol (Chol), respectively. Stability of the formulations in different biological milieus and antibacterial activities compared to conventional forms in the presence of the aforementioned inhibitory factors or CF sputum were evaluated. RESULTS: The formulations were stable in all conditions tested with no significant differences compared to the controls. Inhibition of antibiotic formulations by DNA/F-actin and LPS/LTA was concentration dependent. DNA/F-actin (125 to 1000 mg/L) and LPS/LTA (1 to 1000 mg/L) inhibited conventional tobramycin bioactivity, whereas, liposome-entrapped tobramycin was inhibited at higher concentrations--DNA/F-actin (500 to 1000 mg/L) and LPS/LTA (100 to 1000 mg/L). Neither polymyxin B formulation was inactivated by DNA/F-actin, but LPS/LTA (1 to 1000 mg/L) inhibited the drug in conventional form completely and higher concentrations of the inhibitors (100 to 1000 mg/L) was required to inhibit the liposome-entrapped polymyxin B. Co-incubation with inhibitory factors (1000 mg/L) increased conventional (16-fold) and liposomal (4-fold) tobramycin minimum bactericidal concentrations (MBCs), while both polymyxin B formulations were inhibited 64-fold. CONCLUSIONS: Liposome-entrapment reduced antibiotic inhibition up to 100-fold and the CFU of endogenous P. aeruginosa in sputum by 4-fold compared to the conventional antibiotic, suggesting their potential applications in CF lung infections.


Assuntos
Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Lipossomos/farmacologia , Polímeros/farmacologia , Escarro/efeitos dos fármacos , Escarro/microbiologia , Actinas/farmacologia , Animais , DNA/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Testes de Sensibilidade Microbiana , Polieletrólitos , Pseudomonas aeruginosa/efeitos dos fármacos , Coelhos , Ácidos Teicoicos/farmacologia , Tobramicina/farmacologia
20.
Int J Pharm ; 373(1-2): 141-6, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19429299

RESUMO

Recurrent pulmonary infection and inflammation are major risk factors for high morbidity and mortality in patients with cystic fibrosis (CF). As such, frequent antibiotic use and drug resistant bacterial strains are main concerns in individuals with CF. Bacterial virulence and resistance are influenced by unique CF airways fluid lining and Pseudomonas aeruginosa quorum sensing (QS) and biofilm formation. We have developed a novel liposome formulation consist of bismuth-thiol and tobramycin (LipoBiEDT-TOB) that is non-toxic and highly effective against planktonic bacteria. In this study, we examined the effect of LipoBiEDT-TOB on QS molecule N-acyl homoserine lactone (AHL) secretion by P. aeruginosa isolates in the presence of Agrobacterium tumefaciens reporter strain (A136). LipoBiEDT-TOB activity against biofilm forming P. aeruginosa was compared to free tobramycin using the Calgary Biofilm Device (CBD). Our data indicate that LipoBiEDT-TOB prevents AHL production at low tobramycin concentration (as low as 0.012 mg/l) and stops biofilm forming P. aeruginosa growth at 64 mg/l. The formulation is stable in different biological environments (biofilm, sputum, and bronchoalveolar lavage) and is able to penetrate CF sputum. Taken together, co-encapsulation of bismuth-thiol metal with tobramycin in liposome improves its antimicrobial activities in vitro.


Assuntos
Biofilmes/efeitos dos fármacos , Portadores de Fármacos/química , Mercaptoetanol/análogos & derivados , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Tobramicina/administração & dosagem , Tobramicina/farmacologia , Acil-Butirolactonas/metabolismo , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Proliferação de Células/efeitos dos fármacos , Estabilidade de Medicamentos , Humanos , Lipossomos/química , Lipossomos/metabolismo , Masculino , Mercaptoetanol/química , Polieletrólitos , Polímeros/farmacologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Ratos , Ratos Sprague-Dawley , Escarro/metabolismo , Escarro/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...