Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
JBMR Plus ; 3(10): e10228, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31687654

RESUMO

Over the past century, the study of biological processes in the human body has progressed from tissue culture on glass plates to complex 3D models of tissues, organs, and body systems. These dynamic 3D systems have allowed for more accurate recapitulation of human physiology and pathology, which has yielded a platform for disease study with a greater capacity to understand pathophysiology and to assess pharmaceutical treatments. Specifically, by increasing the accuracy with which the microenvironments of disease processes are modeled, the clinical manifestation of disease has been more accurately reproduced in vitro. The application of these models is crucial in all realms of medicine, but they find particular utility in diseases related to the complex bone marrow niche. Osteoblast, osteoclasts, bone marrow adipocytes, mesenchymal stem cells, and red and white blood cells represent some of cells that call the bone marrow microenvironment home. During states of malignant marrow disease, neoplastic cells migrate to and join this niche. These cancer cells both exploit and alter the niche to their benefit and to the patient's detriment. Malignant disease of the bone marrow, both primary and secondary, is a significant cause of morbidity and mortality today. Innovative study methods are necessary to improve patient outcomes. In this review, we discuss the evolution of 3D models and compare them to the preceding 2D models. With a specific focus on malignant bone marrow disease, we examine 3D models currently in use, their observed efficacy, and their potential in developing improved treatments and eventual cures. Finally, we comment on the aspects of 3D models that must be critically examined as systems continue to be optimized so that they can exert greater clinical impact in the future. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

2.
JBMR Plus ; 3(3): e10173, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30918920

RESUMO

Multiple myeloma (MM) accounts for 13% to 15% of all blood cancers1 and is characterized by the proliferation of malignant cells within the bone marrow (BM). Despite important advances in treatment, most patients become refractory and relapse with the disease. As MM tumors grow in the BM, they disrupt hematopoiesis, create monoclonal protein spikes in the blood, initiate systemic organ and immune system shutdown,2 and induce painful osteolytic lesions caused by overactive osteoclasts and inhibited osteoblasts.3, 4 MM cells are also extremely dependent on the BM niche, and targeting the BM niche has been clinically transformative for inhibiting the positive-feedback "vicious cycle" between MM cells and osteoclasts that leads to bone resorption and tumor proliferation.5, 6, 7, 8 Bone marrow adipocytes (BMAs) are dynamic, secretory cells that have complex effects on osteoblasts and tumor cells, but their role in modifying the MM cell phenotype is relatively unexplored.9, 10, 11, 12, 13 Given their active endocrine function, capacity for direct cell-cell communication, correlation with aging and obesity (both MM risk factors), potential roles in bone disease, and physical proximity to MM cells, it appears that BMAs support MM cells.14, 15, 16, 17 This supposition is based on research from many laboratories, including our own. Therapeutically targeting the BMA may prove to be equally transformative in the clinic if the pathways through which BMAs affect MM cells can be determined. In this review, we discuss the potential for BMAs to provide free fatty acids to myeloma cells to support their growth and evolution. We highlight certain proteins in MM cells responsible for fatty acid uptake and oxidation and discuss the potential for therapeutically targeting fatty acid metabolism or BMAs from where they may be derived. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

3.
Fundam Clin Pharmacol ; 23(3): 311-21, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19527300

RESUMO

The purpose of this study was to assess in rats the pharmacological parameters and effects on gene expression in the liver of the triterpene glycoside actein. Actein, an active component from the herb black cohosh, has been shown to inhibit the proliferation of human breast cancer cells. To conduct our assessment, we determined the molecular effects of actein on livers from Sprague-Dawley rats treated with actein at 35.7 mg/kg for 6 and 24 h. Chemogenomic analyses indicated that actein elicited stress and statin-associated responses in the liver; actein altered expression of cholesterol and fatty acid biosynthetic genes, p53 pathway genes, CCND1 and ID3. Real-time RT-PCR validated that actein induced three time-dependent patterns of gene expression in the liver: (i) a decrease followed by a significant increase of HMGCS1, HMGCR, HSD17B7, NQO1, S100A9; (ii) a progressive increase of BZRP and CYP7A1 and (iii) a significant increase followed by a decrease of CCND1 and ID3. Consistent with actein's statin- and stress-associated responses, actein reduced free fatty acid and cholesterol content in the liver by 0.6-fold at 24 h and inhibited the growth of human HepG2 liver cancer cells. To determine the bioavailability of actein, we collected serum samples for pharmacokinetic analysis at various times up to 24 h. The serum level of actein peaked at 2.4 microg/mL at 6 h. Actein's ability to alter pathways involved in lipid disorders and carcinogenesis may make it a new agent for preventing and treating these major disorders.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Disponibilidade Biológica , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Cimicifuga/química , Ácidos Graxos não Esterificados/metabolismo , Feminino , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saponinas/farmacocinética , Fatores de Tempo , Triterpenos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...