Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 183: 146-156, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838904

RESUMO

Macrophages are the primary cell type orchestrating bioresorbable vascular graft (BVG) remodeling and infiltrate from three sources: the adjacent native vessel, circulating blood, and transmural migration from outer surface of the graft. To elucidate the kinetics of macrophage infiltration into the BVG, we fabricated two different bilayer arterial BVGs consisting of a macroporous sponge layer and a microporous electrospun (ES) layer. The Outer ES graft was designed to reduce transmural cell infiltration from the outer surface and the Inner ES graft was designed to reduce cell infiltration from the circulation. These BVGs were implanted in mice as infrarenal abdominal aorta grafts and extracted at 1, 4, and 8 weeks (n = 5, 10, and 10 per group, respectively) for evaluation. Cell migration into BVGs was higher in the Inner ES graft than in the Outer ES graft. For Inner ES grafts, the majority of macrophage largely expressed a pro-inflammatory M1 phenotype but gradually changed to tissue-remodeling M2 macrophages. In contrast, in Outer ES grafts macrophages primarily maintained an M1 phenotype. The luminal surface endothelialized faster in the Inner ES graft; however, the smooth muscle cell layer was thicker in the Outer ES graft. Collagen fibers were more abundant and matured faster in the Inner ES graft than that in the Outer ES graft. In conclusion, compared to macrophages infiltrating from the circulating blood, transmural macrophages from outside promote the acute inflammatory-mediated response for vascular remodeling and subsequent collagen deposition within BVGs. STATEMENT OF SIGNIFICANCE: To elucidate the kinetics of macrophage infiltration into the bioresorbable vascular graft (BVG), two different bilayer arterial BVGs were implanted in mice as infrarenal abdominal aorta grafts. Cell migration into BVGs was higher in the inner electrospun graft which cells mainly infiltrate from outer surface than in the outer electrospun graft which cells mainly infiltrate from the circulating blood. In the inner electrospun grafts, the majority of macrophages changed from the M1 phenotype to the M2 phenotype, however, outer electrospun grafts maintained the M1 phenotype. Collagen fibers matured faster in the Inner electrospun graft. Compared to macrophages infiltrating from the circulating blood, transmural macrophages from outside promote the acute inflammatory-mediated response for vascular remodeling and subsequent collagen deposition within BVGs.


Assuntos
Implantes Absorvíveis , Prótese Vascular , Movimento Celular , Colágeno , Inflamação , Macrófagos , Remodelação Vascular , Animais , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Masculino , Aorta Abdominal/patologia
2.
Polymers (Basel) ; 16(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38337209

RESUMO

We have developed a functionalized silk fibroin (BSF) that can serve as an improved fundamental material for dressings by specifically capturing growth factors secreted during the healing process and supplying them to cells accumulated in the wound area to enhance the tissue regeneration efficiency. When considering the design of heparin-modified BSF, there is a difficulty with binding to high-molecular-weight polysaccharides without disrupting the hydrophobic crystalline structure of the BSF. In this study, a low-molecular-weight pharmaceutical heparin, dalteparin, was selected and cross-linked with the tyrosine residue presence in the BSF non-crystalline region. When targeting 3D porous applications like nanofiber sheets, as it is crucial not only to enhance biological activity but also to improve handling by maintaining stability in water and mechanical strength, a trade-off between improved cell affinity and reduced mechanical strength depending on crystalline structure was evaluated. The use of dalteparin maintained the mechanical strength better than unfractionated heparin by reducing the effect on disturbing BSF recrystallization. Film surface hydrophilicity and cell proliferation induction were significantly higher in the dalteparin group. For BSF functionalization, using purified heparin was an effective approach that achieved a balance between preserving the mechanical properties and induction of tissue regeneration, offering the potential for various forms in the future.

3.
Biomimetics (Basel) ; 8(1)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975360

RESUMO

Inducing tissue regeneration in many skin defects, such as large traumatic wounds, burns, other physicochemical wounds, bedsores, and chronic diabetic ulcers, has become an important clinical issue in recent years. Cultured cell sheets and scaffolds containing growth factors are already in use but have yet to restore normal skin tissue structure and function. Many tissue engineering materials that focus on the regeneration process of living tissues have been developed for the more versatile and rapid initiation of treatment. Since the discovery that cells recognize the chemical-physical properties of their surrounding environment, there has been a great deal of work on mimicking the composition of the extracellular matrix (ECM) and its three-dimensional network structure. Approaches have used ECM constituent proteins as well as morphological processing methods, such as fiber sheets, sponges, and meshes. This review summarizes material design strategies in tissue engineering fields, ranging from the morphology of existing dressings and ECM structures to cellular-level microstructure mimicry, and explores directions for future approaches to precision skin tissue regeneration.

4.
Biomolecules ; 13(2)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36830649

RESUMO

Hydrogels are being investigated for their application in inducing the regeneration of various tissues, and suitable conditions for each tissue are becoming more apparent. Conditions such as the mechanical properties, degradation period, degradation mechanism, and cell affinity can be tailored by changing the molecular structure, especially in the case of polymers. Furthermore, many high-functional hydrogels with drug delivery systems (DDSs), in which drugs or bioactive substances are contained in controlled hydrogels, have been reported. This review focuses on the molecular design and function of biopolymer-based hydrogels and introduces recent developments in functional hydrogels for clinical applications.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/química , Hidrogéis/química , Biopolímeros , Sistemas de Liberação de Medicamentos
5.
Bioengineering (Basel) ; 10(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36829730

RESUMO

As the number of arteriosclerotic diseases continues to increase, much improvement is still needed with treatments for cardiovascular diseases. This is mainly due to the limitations of currently existing treatment options, including the limited number of donor organs available or the long-term durability of the artificial organs. Therefore, tissue engineering has attracted significant attention as a tissue regeneration therapy in this area. Porous scaffolds are one of the effective methods for tissue engineering. However, it could be better, and its effectiveness varies depending on the tissue application. This paper will address the challenges presented by various materials and their combinations. We will also describe some of the latest methods for tissue engineering.

6.
Polymers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080656

RESUMO

Silk fibroin (SF) has attracted attention as a base biomaterial that could be suitable in many applications because of its shape and structure. Highly functional SF has been developed to promote tissue regeneration with heparin conjugation. However, the hydrophobic three-dimensional structure of SF makes it difficult to bind to high-molecular-weight and hydrophilic compounds such as heparin. In this study, sufficient heparin modification was achieved using tyrosine residues as reaction points to improve cellular response. As it was considered that there was a trade-off between the improvement of water wettability and cell responsiveness induced by heparin modification, influences on the structure, and mechanical properties, the structure and physical properties of the SF conjugated with heparin were extensively evaluated. Results showed that increased amounts of heparin modification raised heparin content and water wettability on film surfaces even though SF formation was not inhibited. In addition, the proliferation of endothelial cells and fibroblasts were enhanced when a surface with sufficient heparin assumed its potential in assisting wound healing. This research emphasizes the importance of material design focusing on the crystal structure inherent in SF in the development of functionalized SF materials.

7.
Biomedicines ; 10(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35740460

RESUMO

Cardiovascular-related medical conditions remain a significant cause of death worldwide despite the advent of tissue engineering research more than half a century ago. Although autologous tissue is still the preferred treatment, donor tissue is limited, and there remains a need for tissue-engineered vascular grafts (TEVGs). The production of extensive vascular tissue (>1 cm3) in vitro meets the clinical needs of tissue grafts and biological research applications. The use of TEVGs in human patients remains limited due to issues related to thrombogenesis and stenosis. In addition to the advancement of simple manufacturing methods, the shift of attention to the combination of synthetic polymers and bio-derived materials and cell sources has enabled synergistic combinations of vascular tissue development. This review details the selection of biomaterials, cell sources and relevant clinical trials related to large diameter vascular grafts. Finally, we will discuss the remaining challenges in the tissue engineering field resulting from complex requirements by covering both basic and clinical research from the perspective of material design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...