Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(7): 3504-3519, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723023

RESUMO

We have studied the clusters involved in the initial stages of nucleation of Zeolitic Imidazolate Frameworks, employing a wide range of computational techniques. In the pre-nucleating solution, the prevalent cluster is the ZnIm4 cluster (formed by a zinc cation, Zn2+, and four imidazolate anions, Im-), although clusters such as ZnIm3, Zn2Im7, Zn2Im7, Zn3Im9, Zn3Im10, or Zn4Im12 have energies that are not much higher, so they would also be present in solution at appreciable quantities. All these species, except ZnIm3, have a tetrahedrally coordinated Zn2+ cation. Small ZnxImy clusters are less stable than the ZnIm4 cluster. The first cluster that is found to be more stable than ZnIm4 is the Zn41Im88 cluster, which is a disordered cluster with glassy structure. Bulk-like clusters do not begin to be more stable than glassy clusters until much larger sizes, since the larger cluster we have studied (Zn144Im288) is still less stable than the glassy Zn41Im88 cluster, suggesting that Ostwald's rule (the less stable polymorph crystallizes first) could be fulfilled, not for kinetic, but for thermodynamic reasons. Our results suggest that the first clusters formed in the nucleation process would be glassy clusters, which then undergo transformation to any of the various crystal structures possible, depending on the kinetic routes provided by the synthesis conditions. Our study helps elucidate the way in which the various species present in solution interact, leading to nucleation and crystal growth.

2.
Nanoscale ; 14(47): 17543-17549, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36421023

RESUMO

We demonstrate for the first time the potential of zeolitic-imidazolate framework-8 nanoparticles to be incorporated within a renal scaffold while retaining their ability to remove uremic toxins (mainly hydrophobic toxins like p-cresol) under flow conditions. This work may pave the way for the future development of novel adsorbents for dialysis and/or artificial kidneys.


Assuntos
Zeolitas , Rim
3.
Nanoscale ; 14(19): 7332-7340, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35535713

RESUMO

Ethylene oxide is one of the most important raw materials in the chemical industry, with an annual production close to 35 million metric tons. Despite its importance, to date, no metal has been found that can compete with the original silver bulk material catalyst discovered in 1931. Recently, a few copper and copper-silver based nanostructures have demonstrated remarkable selectivity and activity, especially when coupled with an industrial chlorine promoter. The present work evaluates the mechanistic role of chlorine as an active promoter of the selective oxidation of ethylene to ethylene oxide in the presence of a silver-copper oxide hybrid nanocatalyst (AgCuO). Experimental kinetic studies combined with density functional theory (DFT) calculations provide insight into the influence that Ag/CuO-supported chlorine atoms have over the ethylene epoxidation reaction. Remarkably, the typically described indirect route via the formation of an oxametallacycle (OMC) is also accompanied by a direct route. Furthermore, the presence of chlorine seems to facilitate a more favorable adsorption energy for ethylene oxide (EO) than for acetaldehyde (AA), the main reaction by-product. As a result, complete oxidation of EO can be further prevented in the presence of this AgCuO hybrid heteronanostructure.

4.
J Phys Chem Lett ; 12(21): 5163-5168, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34032426

RESUMO

Computer simulations of alloys' properties often require calculations in a large space of configurations in a supercell of the crystal structure. A common approach is to map density functional theory results into a simplified interaction model using so-called cluster expansions, which are linear on the cluster correlation functions. Alternative descriptors have not been sufficiently explored so far. We show here that a simple descriptor based on the Coulomb matrix eigenspectrum clearly outperforms the cluster expansion for both total energy and bandgap energy predictions in the configurational space of a MgO-ZnO solid solution, a prototypical oxide alloy for bandgap engineering. Bandgap predictions can be further improved by introducing non-linearity via gradient-boosted decision trees or neural networks based on the Coulomb matrix descriptor.

5.
ACS Appl Mater Interfaces ; 10(35): 29694-29704, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30089205

RESUMO

We study the adsorption performance of metal-organic frameworks (MOFs) impregnated of ionic liquids (ILs). To this aim we calculated adsorption and diffusion of light gases (CO2, CH4, N2) and their mixtures in hybrid composites using molecular simulations. The hybrid composites consist of 1-ethyl-3-methylimidazolium thiocyanate impregnated in IRMOF-1, HMOF-1, MIL-47, and MOF-1. We found that the increase of the amount of IL enhances the adsorption selectivity in favor of carbon dioxide for the mixtures CO2/CH4 and CO2/N2 and in favor of methane in the mixture CH4/N2. We also provide detailed analysis of the microscopic organization of ILs and adsorbates via radial distribution functions and average occupation profiles and study the impact of the ILs in the diffusion of the adsorbates inside the pores of the MOFs. Based on our findings, we discuss the advantages of using IL/MOF composites for gas adsorption to increase the adsorption of gases and to control the pore sizes of the structures to foster selective adsorption.

6.
Phys Chem Chem Phys ; 20(27): 18647-18656, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29955743

RESUMO

The development of new interatomic potentials to model metallic systems is a difficult task, due in part to the dependence between the parameters that describe the electron density and the short-range interactions. Parameter search methods are prone to false convergence. To solve this problem, we have developed a methodology for obtaining the electron density parameters independently of the short-range interactions, so that physically sound parameters can be obtained to describe the electron density, after which the short-range parameters can be fitted, thus reducing the complexity of the process and yielding better interatomic potentials. With the new method we can develop self-consistent, accurate force fields, using solely calculations, without the need to fit to experimental data. Density functional theory calculations are used to compute the observables with which the potential is fit. We applied the method to a Ni-based Inconel 625 superalloy (IN625), modelled here as Ni, Cr, Mo and Fe solid solution alloys. The capability of the force fields developed using this new method is validated, by comparing the structural and thermo-elastic properties predicted with the force fields, with the corresponding experimental data, both for single crystals and polycrystalline alloys.

7.
Chemphyschem ; 19(13): 1665-1673, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29668113

RESUMO

Among many other applications, room-temperature ionic liquids (ILs) are used as electrolytes for storage and energy-conversion devices. In this work, we investigate, at the microscopic level, the structural and dynamical properties of 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide [C4 PYR]+ [Tf2 N]- IL-based electrolytes for metal-ion batteries. We carried out molecular dynamics simulations of electrolytes mainly composed of [C4 PYR]+ [Tf2 N]- IL with the addition of Mn+ -[Tf2 N]- metal salts (M=Li+ , Na+ , Ni2+ , Zn2+ , Co2+ , Cd2+ , and Al3+ , n=1, 2, and 3) dissolved in the IL. The addition of low salt concentrations lowers the charge transport and conductivity of the electrolytes. This effect is due to the strong interaction of the metal cations with the [Tf2 N]- anions, which allows for molecular aggregation between them. We analyze how the conformation of the [Tf2 N]- anions surrounding the metal cations determine the charge-transport properties of the electrolyte. We found two main conformations based on the size and charge of the metal cation: monodentate and bidentate (number of oxygen atoms of the anion pointing to the metal atoms). The microscopic local structure of the Mn+ -[Tf2 N]- aggregates influences the microscopic charge transport as well as the macroscopic conductivity of the total electrolyte.

8.
Nat Commun ; 8: 14457, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198376

RESUMO

The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects.

9.
ChemSusChem ; 10(7): 1616-1623, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28106342

RESUMO

Metal-air batteries are intensively studied because of their high theoretical energy-storage capability. However, the fundamental science of electrodes, electrolytes, and reaction products still needs to be better understood. In this work, the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was chosen to study the influence of a wide range of metal cations (Mn+ ) on the electrochemical behavior of oxygen. The relevance of the theory of Lewis hard and soft acids and bases to predict satisfactorily the reduction potential of oxygen in electrolytes containing metal cations is demonstrated. Systems with soft and intermediate Mn+ acidity are shown to facilitate oxygen reduction and metal oxide formation, whereas oxygen reduction is hampered by hard acid cations such as sodium and lithium. Furthermore, DFT calculations on the energy of formation of the resulting metal oxides rationalize the effect of Mn+ on oxygen reduction. A case study on the Na-O2 system is described in detail. Among other things, the Na+ concentration of the electrolyte is shown to control the electrochemical pathway (solution precipitation vs. surface deposition) by which the discharge product grows. All in all, fundamental insights for the design of advanced electrolytes for metal-air batteries, and Na-air batteries in particular, are provided.


Assuntos
Líquidos Iônicos/química , Oxigênio/química , Sódio/química , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Modelos Moleculares , Conformação Molecular , Oxirredução , Teoria Quântica
10.
Phys Chem Chem Phys ; 19(2): 1288-1297, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27966685

RESUMO

Nonactin and its analogs constitute a central class of macrocycles with an antibiotic activity closely related to their selective ionophoric behavior. In this study, we apply experimental and computational methods to revisit the specificity of cation binding and transport by three nactin variants differing in structural properties, such as the position of the ester linkages, the nature of the side groups, or the flexibility of the backbone. On the one hand, electrospray ionization mass spectrometry and infrared spectroscopy are employed to expose the selectivity of the liquid-liquid (water-chloroform) extraction of alkali cations by nonactin and to demonstrate that the cation complexes are partially hydrated in the organic phase. Furthermore, laser desorption mass spectrometry is employed to determine the intrinsic cation affinities of nonactin under solvent-free conditions. On the other hand, density functional theory calculations are performed to characterize the conformations of the alkali cation complexes of the three nactins, and to assess the role of intermolecular and solvent interactions in determining their relative stability. Depending on the structure of the macrocycle, the cation complexes adopt either a cage-like conformation or a tweezer-like conformation. The computations show that the partial hydration of those different conformations in the organic phase, determine the distinct cation extraction selectivities that are observed experimentally.


Assuntos
Ionóforos/química , Lactonas/química , Cátions , Macrolídeos/química , Conformação Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Infravermelho
11.
Angew Chem Int Ed Engl ; 55(52): 16012-16016, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-27862763

RESUMO

Tuning the electronic structure of metal-organic frameworks is the key to extending their functionality to the photocatalytic conversion of absorbed gases. Herein we discuss how the band edge positions in zeolitic imidazolate frameworks (ZIFs) can be tuned by mixing different imidazole-based linkers within the same structure. We present the band alignment for a number of known and hypothetical Zn-based ZIFs with respect to the vacuum level. Structures with a single type of linker exhibit relatively wide band gaps; however, by mixing linkers of a low-lying conduction edge with linkers of a high-lying valence edge, we can predict materials with ideal band positions for visible-light water splitting and CO2 reduction photocatalysis. By introducing copper in the tetrahedral position of the mixed-linker ZIFs, it would be possible to increase both photo-absorption and the electron-hole recombination times.

12.
Chemistry ; 22(29): 10036-43, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27305363

RESUMO

Incorporation of germanium in zeolites is well known to confer static flexibility to their framework, by stabilizing the formation of small rings. In this work, we show that the flexibility associated to Ge atoms in zeolites goes beyond this static effect, manifesting also a clear dynamic nature, in the sense that it leads to enhanced molecular diffusion. Our study combines experimental and theoretical methods providing evidence for this effect, which has not been described previously, as well as a rationalization for it, based on atomistic grounds. We have used both pure-silica and silico-germanate ITQ-29 (LTA topology) zeolites as a case study. Based on our simulations, we identify the flexibility associated to the pore breathing-like behavior induced by the Ge atoms, as the key factor leading to the enhanced diffusion observed experimentally in Ge-containing zeolites.

13.
Chemphyschem ; 17(16): 2473-81, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27171359

RESUMO

Compositional effects on the charge-transport properties of electrolytes for batteries based on room-temperature ionic liquids (RTILs) are well-known. However, further understanding is required about the molecular origins of these effects, in particular regarding the replacement of Li by Na. In this work, we investigate the use of RTILs in batteries, by means of both classical molecular dynamics (MD), which provides information about structure and molecular transport, and ab initio molecular dynamics (AIMD), which provides information about structure. The focus has been placed on the effect of adding either Na(+) or Li(+) to 1-methyl-1-butyl-pyrrolidinium [C4 PYR](+) bis(trifluoromethanesulfonyl)imide [Tf2 N](-) . Radial distribution functions show excellent agreement between MD and AIMD, which ensures the validity of the force fields used in the MD. This is corroborated by the MD results for the density, the diffusion coefficients, and the total conductivity of the electrolytes, which reproduce remarkably well the experimental observations for all studied Na/Li concentrations. By extracting partial conductivities, it is demonstrated that the main contribution to the conductivity is that of [C4 PYR](+) and [Tf2 N](-) . However, addition of Na(+) /Li(+) , although not significant on its own, produces a dramatic decrease in the partial conductivities of the RTIL ions. The origin of this indirect effect can be traced to the modification of the microscopic structure of the liquid as observed from the radial distribution functions, owing to the formation of [Na(Tf2 N)n ]((n-1)-) and [Li(Tf2 N)n ]((n-1)-) clusters at high concentrations. This formation hinders the motion of the large ions, hence reducing the total conductivity. We demonstrate that this clustering effect is common to both Li and Na, showing that both ions behave in a similar manner at a microscopic level in spite of their distinct ionic radii. This is an interesting finding for extending Li-ion and Li-air technologies to their potentially cheaper Na-based counterparts.

14.
Chem Mater ; 28(22): 8296-8304, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-28190918

RESUMO

Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal-organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host-guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion.

15.
Dalton Trans ; 45(1): 216-25, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26600432

RESUMO

To find optimal porous materials for adsorption-based separations is a challenging task due to the extremely large number of possible pore topologies and compositions. New porous material classes such as Metal Organic Frameworks (MOFs) are emerging, and hope to replace traditionally used materials such as zeolites. Computational screening offers relatively fast searching for candidate structures as well as side-by-side comparisons between material families. This work is pioneering at examining the families comprised by the experimentally known zeolites and their respective Zeolitic Imidazolate Framework (ZIF) counterparts in the context of a number of environmental and industrial separations involving carbon dioxide, nitrogen, methane, oxygen, and argon. Additionally, unlike related published work, here all the targeted structures have been previously relaxed through energy minimization. On the first level of characterization, we considered a detailed pore characterization, identifying 24 zeolites as promising candidates for gas separation based on adsorbate sizes. The second level involved interatomic potential-based calculations to assess the adsorption performance of the materials. We found no correlation in the values of heat of adsorption between zeolites and ZIFs sharing the same topology. A number of structures were identified as potential experimental targets for CO2/N2, and CO2/CH4 affinity-based separations.

16.
Chemphyschem ; 16(17): 3672-80, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26346407

RESUMO

The understanding of supramolecular recognition in room-temperature ionic liquids (RTILs) is key to develop the full potential of these materials. In this work, we provide insights into the selectivity of the binding of alkali metal cations by standard cyclodextrin and calixarene macrocycles in RTILs. A direct laser desorption/ionization mass spectrometry approach is employed to determine the relative abundances of the inclusion complexes formed through competitive binding in RTIL solutions. The results are compared with the binding selectivities measured under solvent-free conditions and in water/methanol solutions. Cyclodextrins and calixarenes in which the peripheral OH groups are substituted by bulkier side groups preferentially bind to Cs(+) . Such specific ionophoric behavior is substantially enhanced by solvation effects in the RTIL. This finding is rationalized with the aid of quantum mechanical calculations, in terms of the conformational features and steric interactions that drive the solvation of the inclusion complexes by the bulky RTIL counterions.

17.
Langmuir ; 31(30): 8294-302, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26168350

RESUMO

In this article we present the preactivation of TiO2 and ITO by UV irradiation under ambient conditions as a tool to enhance the incorporation of organic molecules on these oxides by evaporation at low pressures. The deposition of π-stacked molecules on TiO2 and ITO at controlled substrate temperature and in the presence of Ar is thoroughly followed by SEM, UV-vis, XRD, RBS, and photoluminescence spectroscopy, and the effect is exploited for the patterning formation of small-molecule organic nanowires (ONWs). X-ray photoelectron spectroscopy (XPS) in situ experiments and molecular dynamics simulations add critical information to fully elucidate the mechanism behind the increase in the number of adsorption centers for the organic molecules. Finally, the formation of hybrid organic/inorganic semiconductors is also explored as a result of the controlled vacuum sublimation of organic molecules on the open thin film microstructure of mesoporous TiO2.

18.
Phys Chem Chem Phys ; 17(24): 15912-20, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26020160

RESUMO

The thermostructural properties of Ni-Cr materials, as bulk and nanoparticle (NP) systems, have been predicted with a newly developed interatomic potential, for Ni/Cr ratios from 100/0 to 60/40. The potential, which has been fitted using experimental data and further validated using Density Functional Theory (DFT), describes correctly the variation with temperature of lattice parameters and the coefficient of thermal expansion, from 100 K to 1000 K. Using this potential, we have performed Molecular Dynamics (MD) simulations on bulk Ni-Cr alloys of various compositions, for which no experimental data are available. Similarly, NPs with diameters of 3, 5, 7, and 10 nm were studied. We found a very rapid convergence of NP properties with the size of the systems, showing already the 5 nm NPs with a thermostructural behaviour similar to the bulk. MD simulations of two 5 nm NPs show very little sintering and thermally induced damage, for temperatures between 300 K and 1000 K, suggesting that materials formed by agglomeration of Ni-Cr NPs meet the thermostructural stability requirements for catalysis applications.

19.
Stem Cell Investig ; 2: 21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27358889

RESUMO

BACKGROUND: Mobilizing hematopoietic stem cells may be a promising intervention for the treatment of idiopathic dilated cardiomyopathy (IDCM) in infant and children. So the aim of the work is to evaluate the efficacy of granulocyte-colony stimulating factor (G-CSF) as a therapeutic modality in pediatric IDCM. METHODS: A randomized clinical trial was conducted on 40 pediatric patients with IDCM. They were subjected to history taking, clinical examination, serum lactate dehydrogenase (LDH), total creatinine phosphokinase (CPK), creatinine phosphokinase isoenzyme B (CK-MB) isoenzyme, and peripheral blood CD34(+) cell assessment before and at day 7 after subcutaneous G-CSF injection for 5 consecutive days. Echocardiography was done before and 1, 3 and 6 months after therapy. RESULTS: Clinical improvement in the form of regression of patients Modified Ross heart failure (MRHC) classification classes. Increased percentage of CD34(+) mobilized cells from the bone marrow, and significant increase in blood counts especially white blood cells 7 days after G-CSF injection. Significant improvement was found in echocardiographic data evaluating systolic function of the heart [Ejection fraction, Fractional shortening and systolic velocity at mitral annulus (Sm)]. CONCLUSIONS: Administration of G-CSF may be beneficial in improving systolic functions of the heart in pediatric IDCM and more studies with a large number of patients are needed.

20.
J Chem Phys ; 136(11): 114301, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22443758

RESUMO

The elucidation of the structural requirements for molecular recognition by the crown ether (18-crown-6)-2,3,11,12-tetracarboxylic acid (18c6H(4)) and its cationic complexes constitutes a topic of current fundamental and practical interest in catalysis and analytical sciences. The flexibility of the central ether ring and its four carboxyl side arms poses important challenges to experimental and theoretical approaches. In this study, infrared action vibrational spectroscopy and quantum mechanical computations are employed to characterize the conformational structure of the isolated gas phase complex formed by the 18c6H(4) host with NH(4)(+) as guest. The results show that the most stable gas-phase structure is a barrel-like conformation sustained by tetrapodal H-bonding of the ammonia cation with two C=O side groups and with four oxygen atoms of the ether ring in a bifurcated arrangement. Interestingly, a similar structure had been proposed in previous crystallographic studies. The experiment also provides evidence for a significant contribution of a higher energy bowl-like conformer with features resembling those adopted by 18c6H(4) in the analogous complexes with secondary amines. Such a conformation displays H-bonding between confronted side carboxyl groups and tetrapodal binding of the NH(4)(+) with the ether ring and with one C=O group. Structures involving even more extensive intramolecular H-bonding in the 18c6H(4) substrate are found to lie higher in energy and are ruled out by the experiment.


Assuntos
Éteres de Coroa/química , Teoria Quântica , Compostos de Amônio Quaternário/química , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...