Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984403

RESUMO

In the present study, the hydrogen embrittlement (HE) susceptibility of an additively manufactured (AM) 316L stainless steel (SS) was investigated. The materials were fabricated in the form of a lattice auxetic structure with three different strut thicknesses, 0.6, 1, and 1.4 mm, by the laser powder bed fusion technique at a volumetric energy of 70 J·mm-3. The effect of H charging on the strength and ductility of the lattice structures was evaluated by conducting tensile testing of the H-charged specimens at a slow strain rate of 4 × 10-5 s-1. Hydrogen was introduced to the specimens via electrochemical charging in an NaOH aqueous solution for 24 h at 80 °C before the tensile testing. The microstructure evolution of the H-charged materials was studied using the electron backscattered diffraction (EBSD) technique. The study revealed that the auxetic structures of the AM 316L-SS exhibited a slight reduction in mechanical properties after H charging. The tensile strength was slightly decreased regardless of the thickness. However, the ductility was significantly reduced with increasing thickness. For instance, the strength and uniform elongation of the auxetic structure of the 0.6 mm thick strut were 340 MPa and 17.4% before H charging, and 320 MPa and 16.7% after H charging, respectively. The corresponding values of the counterpart's 1.4 mm thick strut were 550 MPa and 29% before H charging, and 523 MPa and 23.9% after H charging, respectively. The fractography of the fracture surfaces showed the impact of H charging, as cleavage fracture was a striking feature in H-charged materials. Furthermore, the mechanical twins were enhanced during tensile straining of the H-charged high-thickness material.

2.
Materials (Basel) ; 16(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837254

RESUMO

In this work, 2 mm thick medium-Mn austenitic stainless steel (MMn-SS) plates were joined with austenitic NiCr stainless steel (NiCr-SS) and low-carbon steel (LCS) using the gas tungsten arc welding technique. A precise adjustment of the welding process parameters was conducted to achieve high-quality dissimilar joints of MMn-SS with NiCr-SS and LCS. The microstructural evolution was studied using laser scanning confocal and electron microscopes. Secondary electron imaging and electron backscatter diffraction (EBSD) techniques were intensively employed to analyze the fine features of the weld structures. The mechanical properties of the joints were evaluated by uniaxial tensile tests and micro-indentation hardness (HIT). The microstructure of the fusion zone (FZ) in the MMn-SS joints exhibited an austenitic matrix with a small fraction of δ-ferrite, ~6%. The tensile strength (TS) of the MMn-SS/NiCr-SS joint is significantly higher than that of the MMn-SS/LCS joint. For instance, the TSs of MMn-SS joints with NiCr-SS and LCS are 610 and 340 MPa, respectively. The tensile properties of MMn-SS/LCS joints are similar to those of BM LCS, since the deformation behavior and shape of the tensile flow curve for that joint are comparable with the flow curve of LCS. The HIT measurements show that the MMn-SS/NiCr-SS joint is significantly stronger than the MMn-SS/LCS joint since the HIT values are 2.18 and 1.85 GPa, respectively.

3.
Materials (Basel) ; 14(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34639977

RESUMO

In this study, ultra-high-strength steels, namely, cold-hardened austenitic stainless steel AISI 301 and martensitic abrasion-resistant steel AR600, as base metals (BMs) were butt-welded using a disk laser to evaluate the microstructure, mechanical properties, and effect of post-weld heat treatment (PWHT) at 250 °C of the dissimilar joints. The welding processes were conducted at different energy inputs (EIs; 50-320 J/mm). The microstructural evolution of the fusion zones (FZ) in the welded joints was examined using electron backscattering diffraction (EBSD) and laser scanning confocal microscopy. The hardness profiles across the weldments and tensile properties of the as-welded joints and the corresponding PWHT joints were measured using a microhardness tester and universal material testing equipment. The EBSD results showed that the microstructures of the welded joints were relatively similar since the microstructure of the FZ was composed of a lath martensite matrix with a small fraction of austenite. The welded structure exhibited significantly higher microhardness at the lower EIs of 50 and 100 J/mm (640 HV). However, tempered martensite was promoted at the high EI of 320 J/mm, significantly reducing the hardness of the FZ to 520 HV. The mechanical tensile properties were considerably affected by the EI of the as-welded joints. Moreover, the PWHT enhanced the tensile properties by increasing the deformation capacity due to promoting the tempered martensite in the FZ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...