Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Mol Mutagen ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37942839

RESUMO

The in vivo working group (WG) considered three topics: acceptable maximum doses for negative erythrocyte micronucleus (MN) tests, validation status of MN assays in non-hematopoietic tissues, and nuisance factors in the comet assay. The WG reached agreement on many issues, including: negative erythrocyte MN studies should be acceptable if dosing is conducted to Organisation for Economic Co-operation and Development (OECD) test guideline (TG) 474 recommendations and if sufficient bone marrow exposure is demonstrated; consensus on the evidence required to demonstrate "sufficient" exposure was not reached. The liver MN test using six-week-old rats is sufficiently validated to develop an OECD TG, but the impact of animal age warrants additional study. Ki-67 is a reliable marker for cellular proliferation in hepatocytes. The gastrointestinal tract MN test is useful for detecting poorly absorbed or rapidly degraded aneugens, and for genotoxic metabolites formed in the colon. Although current validation data are insufficient to support the development of an OECD TG, the methodologies are sufficient to consider as an appendix to OECD TG474. Comparison of comet assay results to laboratory historical control data (HCD) should not be used in data evaluation, unless the HCD distribution is demonstrated to be stable and the predominant source of HCD variation is due to animal, not study, factors. No universally acceptable negative control limit for any tissue was identified. Methodological differences in comet studies can result in variable data interpretations; more data are required before best practice recommendations can be made. Hedgehogs alone are unreliable indicators of cytotoxicity and additional investigations into cytotoxicity markers are required.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37567645

RESUMO

The repeated-dose liver micronucleus (RDLMN) assay is a widely accepted method for detecting genotoxic substances. We investigated the effect of animal age on this assay. Proliferation activity in the liver tissue of untreated rats at age = 3.5, 6, 8, 10, or 12 weeks was measured via immunohistochemical expression of Ki-67 protein. The percentage of Ki-67-positive hepatocytes decreased markedly with age, reaching very low levels after 10 weeks, indicating decline with age of proliferative capacities in the liver. We calculated the area under the curve (AUC) of the approximate curve generated from the percentage of Ki-67-positive cells, to estimate the hepatocyte proliferation activity over the dosing period in the two regimens of the 4-week RDLMN assay: dosing initiated at age = 6 or 8 weeks. Hepatocyte proliferation activity of the former regimen was approximately double that of the latter. We also calculated the AUC for the juvenile-rat method, in which rats are treated for two days at age = 3.5 weeks. The AUC calculated for that method was approximately half of that for the 4-week repeated-dosing regimen initiated at 6 weeks of age. These findings suggest that the 4-week RDLMN assay with dosing initiated at age = 6 weeks could be approximately twice as sensitive as the other two methods.


Assuntos
Medula Óssea , Carcinógenos , Ratos , Animais , Antígeno Ki-67 , Testes para Micronúcleos/métodos , Ratos Sprague-Dawley , Carcinógenos/toxicidade , Relação Dose-Resposta a Droga , Esquema de Medicação , Administração Oral , Aberrações Cromossômicas , Comportamento Cooperativo , Sociedades Farmacêuticas , Fígado , Hepatócitos , Proliferação de Células
3.
Genes Environ ; 44(1): 24, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36258253

RESUMO

BACKGROUND: Multiwalled carbon nanotubes (MWCNTs) are suspected lung carcinogens because their shape and size are similar to asbestos. Various MWCNT types are manufactured; however, only MWNT-7 is classified into Group 2B by The International Agency for Research on Cancer. MWNT-7's carcinogenicity is strongly related to inflammatory reactions. On the other hand, inconsistent results on MWNT-7 genotoxicity have been reported. We previously observed no significant differences in both Pig-a (blood) and gpt (lung) mutant frequencies between MWNT-7-intratracheally treated and negative control rats. In this study, to investigate in vivo MWNT-7 genotoxicity on various endpoints, we attempted to develop a lung micronucleus assay through ex vivo culture targeting the cellular fraction of Clara cells and alveolar Type II (AT-II) cells, known as the initiating cells of lung cancer. Using this system, we analyzed the in vivo MWNT-7 genotoxicity induced by both whole-body inhalation exposure and intratracheal instillation. We also conducted an erythrocyte micronucleus assay using the samples obtained from animals under intratracheal instillation to investigate the tissue specificity of MWNT-7 induced genotoxicities. RESULTS:  We detected a significant increase in the incidence of micronucleated cells derived from the cellular fraction of Clara cells and AT-II cells in both MWNT-7-treated and positive control groups compared to the negative control group under both whole-body inhalation exposures and intratracheal instillation. Additionally, the erythrocyte micronucleus assay detected a significant increase in the incidence of micronucleated reticulocytes only in the positive control group. CONCLUSIONS: Our findings indicated that MWNT-7 was genotoxic in the lungs directly exposed by both the body inhalation and intratracheal instillation but not in the hematopoietic tissue.

4.
Genes Environ ; 44(1): 21, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982479

RESUMO

BACKGROUND: The repeated-dose liver micronucleus (RDLMN) assay has been well-developed and applied because of its simplicity and the ease of integration into general toxicity studies which is the preferred method from the 3R's point of view. In this assay, we observed micronucleated hepatocytes which accumulated during a rather long-term dosing period. When considering integration into general toxicity studies, the effects of age of the animals used in the micronucleus assay becomes a major issue. The effect of age on the micronucleus induction rate has been reported in bone marrow micronucleus assays, and it is considered that the decrease in cell proliferation rate due to aging is the cause of the decrease in sensitivity. A decrease in sensitivity due to aging was also reported in a liver micronucleus assay using clofibrate and the cause is considered to be a decrease in hepatocyte proliferation activity due to aging. However, no actual decrease in hepatocyte proliferation rate due to aging has been reported. In addition, there are no reports, so far, on whether similar effects of aging appear when other substances were administered. To investigate the effects of aging in the RDLMN assay, this study focused on the effects of 14-day repeated administration of DEN, a well-known genotoxic hepatocarcinogen with the hepatocyte toxicity which should cause an elevation of cell proliferation rate as a reflective regeneration. RESULTS: The liver micronuclei induced by DEN were equivalent between the two age groups (i.e., six and eight weeks of age at the start of dosing). In the histopathological examination for the liver, single cell necrosis, karyomegaly, and increased mitosis were observed in the hepatocytes, and the frequency and severity were increased dose-dependently. Ki-67 immunohistochemical analysis which can detect all cells in the cell cycle other than those in the G0 phase revealed dose-dependent increase of cell proliferation activity, and the difference between ages was not observed. CONCLUSION: The effect of aging on the RDLMN assay could not be recognized when DEN was administered for 14 days in rats. Meanwhile, it was supported by the histopathological examination and Ki-67 immunohistochemical analysis that such an effect of aging was masked by the compensatory hepatocyte proliferation which was induced by the hepatocyte toxicity of DEN.

5.
Genes Environ ; 44(1): 2, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983681

RESUMO

BACKGROUND: Currently, revisions to the ICH S1 guidance on rodent carcinogenicity testing are being proposed. Application of this approach would reduce the use of animals in accordance with the 3Rs principles (reduce/refine/replace). The method would also shift resources to focus on more scientific mechanism-based carcinogenicity assessments and promote safe and ethical development of new small molecule pharmaceuticals. In the revised draft, findings such as cellular hypertrophy, diffuse and/or focal cellular hyperplasia, persistent tissue injury and/or chronic inflammation, preneoplastic changes, and tumors are listed as histopathology findings of particular interest for identifying carcinogenic potential. In order to predict hepatocarcinogenicity of test chemicals based on the results from 2- or 4-week repeated dose studies, we retrospectively reanalyzed the results of a previous collaborative study on the liver micronucleus assay. We focused on liver micronucleus induction in combination with histopathological changes including hypertrophy, proliferation of oval cells or bile duct epithelial cells, tissue injuries, regenerative changes, and inflammatory changes as the early responses of hepatocarcinogenesis. For these early responses, A total of 20 carcinogens, including 14 genotoxic hepatocarcinogens (Group A) and 6 non-liver-targeted genotoxic carcinogens (Group B) were evaluated. RESULTS: In the Group A chemicals, 5 chemicals (NPYR, MDA, NDPA, 2,6-DNT, and NMOR) showed all of the 6 early responses in hepatocarcinogenesis. Five chemicals (DMN, 2,4-DNT, QUN, 2-AAF, and TAA) showed 4 responses, and 4 chemicals (DAB, 2-NP, MCT, and Sudan I) showed 3 responses. All chemicals exhibited at least 3 early responses. Contrarily, in the Group B chemicals (6 chemicals), 3 of the 6 early responses were observed in 1 chemical (MNNG). No more than two responses were observed in 3 chemicals (MMC, MMS, and KA), and no responses were observed in 2 chemicals (CP and KBrO3). CONCLUSION: Evaluation of liver micronucleus induction in combination with histopathological examination is useful for detecting hepatocarcinogens. This assay takes much less time than routine long-term carcinogenicity studies.

6.
Genes Environ ; 43(1): 37, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503583

RESUMO

BACKGROUND: The liver micronucleus (MN) assay is an effective and important in vivo test for detecting genotoxic compounds. In particular, the repeated-dose liver MN (RDLMN) assay which greatly facilitates incorporation of the liver MN assay into the general toxicity study has been developed. Usefulness of the RDLMN assay was appraised highly in the 7th International Workshops on Genotoxicity Testing (2017 in Tokyo) in that sufficient numbers and types of chemicals were studied and easy integration into the general toxicity study is preferred from the 3R's point of view. However, it was pointed out that it is necessary to evaluate the effect of age at the start of 4-week repeated administration, since there are limited data, where only those of rats of 6 week of age at the start of administration are available. In this study, we conducted the 4-week RDLMN assay using rats of 6 and 8 weeks of age (at the start of administration) to investigate the effect of age on the liver MN inducibility. Clofibrate, a weak inducer of liver MN, was used in this study to detect the slight difference in the liver MN induction. RESULTS: The liver MN induced by clofibrate was detected in both rats of 6 and 8 weeks of age at the start of administration. However, the liver MN induction was lower in rats of 8 weeks of age compared to rats of 6 weeks of age at the start of administration. CONCLUSION: These results suggest that the liver MN inducibility decreases with age. Therefore, we recommend the use of rats of 6 weeks of age at start of administration to reliably detect the liver MN induction in the RDLMN assay.

7.
Genes Environ ; 43(1): 7, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676587

RESUMO

BACKGROUND: Conflicting results between bacterial mutagenicity tests (the Ames test) and mammalian carcinogenicity tests might be due to species differences in metabolism, genome structure, and DNA repair systems. Mutagenicity assays using human cells are thought to be an advantage as follow-up studies for positive results in Ames tests. In this collaborative study, a thymidine kinase gene mutation study (TK6 assay) using human lymphoblastoid TK6 cells, established in OECD TG490, was used to examine 10 chemicals that have conflicting results in mutagenicity studies (a positive Ames test and a negative result in rodent carcinogenicity studies). RESULTS: Two of 10 test substances were negative in the overall judgment (20% effective as a follow-up test). Three of these eight positive substances were negative after the short-term treatment and positive after the 24 h treatment, despite identical treatment conditions without S9. A toxicoproteomic analysis of TK6 cells treated with 4-nitroanthranilic acid was thus used to aid the interpretation of the test results. This analysis using differentially expressed proteins after the 24 h treatment indicated that in vitro specific oxidative stress is involved in false positive response in the TK6 assay. CONCLUSIONS: The usefulness of the TK6 assay, by current methods that have not been combined with new technologies such as proteomics, was found to be limited as a follow-up test, although it still may help to reduce some false positive results (20%) in Ames tests. Thus, the combination analysis with toxicoproteomics may be useful for interpreting false positive results raised by 24 h specific reactions in the assay, resulting in the more reduction (> 20%) of false positives in Ames test.

8.
Mutagenesis ; 36(1): 87-94, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33367723

RESUMO

As the carcinogenic risk of herbs containing aristolochic acids (AAs) is a global health issue, quantitative evaluation of toxicity is needed for the regulatory decision-making and risk assessment of AAs. In this study, we selected AA I (AAI), the most abundant and representative compound in AAs, to treat transgenic gpt delta mice at six gradient doses ranging from 0.125 to 4 mg/kg/day for 28 days. AAI-DNA adduct frequencies and gpt gene mutation frequencies (MFs) in the kidney, as well as Pig-a gene MFs and micronucleated reticulocytes (MN-RETs) frequencies in peripheral blood, were monitored. The dose-response (DR) relationship data for these in vivo genotoxicity endpoints were quantitatively evaluated using an advanced benchmark dose (BMD) approach with different critical effect sizes (CESs; i.e., BMD5, BMD10, BMD50 and BMD100). The results showed that the AAI-DNA adduct frequencies, gpt MFs and the MN-RETs presented good DR relationship to the administrated doses, and the corresponding BMDL100 (the lower 90% confidence interval of the BMD100) values were 0.017, 0.509 and 3.9 mg/kg/day, respectively. No positive responses were observed in the Pig-a MFs due to bone marrow suppression caused by AAI. Overall, we quantitatively evaluated the genotoxicity of AAI at low doses for multiple endpoints for the first time. Comparisons of BMD100 values across different endpoints provide a basis for the risk assessment and regulatory decision-making of AAs and are also valuable for understanding the genotoxicity mechanism of AAs.


Assuntos
Ácidos Aristolóquicos/toxicidade , Adutos de DNA , Dano ao DNA , Proteínas de Escherichia coli/metabolismo , Taxa de Mutação , Pentosiltransferases/metabolismo , Animais , Benchmarking , Proteínas de Escherichia coli/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes para Micronúcleos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Pentosiltransferases/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-31699340

RESUMO

The working group reached complete or majority agreement on many issues. Results from TGR and in vivo comet assays for 91 chemicals showed they have similar ability to detect in vivo genotoxicity per se with bacterial mutagens and Ames-positive carcinogens. TGR and comet assay results were not significantly different when compared with IARC Group 1, 2 A, and unclassified carcinogens. There were significantly more comet assay positive responses for Group 2B chemicals, and for IARC classified and unclassified carcinogens combined, which may be expected since mutation is a sub-set of genotoxicity. A liver comet assay combined with the bone marrow/blood micronucleus (MNviv) test would detect in vivo genotoxins that do not exhibit tissue-specific or site-of-contact effects, and is appropriate for routine in vivo genotoxicity testing. Generally for orally administered substances, a comet assay at only one site-of-contact GI tract tissue (stomach or duodenum/jejunum) is required. In MNviv tests, evidence of target tissue exposure can be obtained in a number of different ways, as recommended by ICH S2(R1) and EFSA (Hardy et al., 2017). Except for special cases the i.p. route is inappropriate for in vivo testing; for risk evaluations more weight should be given to data from a physiologically relevant administration route. The liver MN test is sufficiently validated for the development of an OECD guideline. However, the impact of dosing animals >6 weeks of age needs to be evaluated. The GI tract MN test shows promise but needs more validation for an OECD guideline. The Pig-a assay detects systemically available mutagens and is a valuable follow-up to in vitro positive results. A new freeze-thaw protocol provides more flexibility. Mutant reticulocyte and erythrocyte frequencies should both be determined. Preliminary data are available for the Pig-a assay in male rat germ cells which require validation including germ cell DNA mutation origin.


Assuntos
Testes de Mutagenicidade/métodos , Animais , Animais Geneticamente Modificados , Biotransformação , Dano ao DNA , Genes Reporter , Vetores Genéticos/genética , Guias como Assunto , Camundongos , Camundongos Endogâmicos , Testes de Mutagenicidade/instrumentação , Testes de Mutagenicidade/normas , Mutagênicos/farmacocinética , Mutagênicos/toxicidade , Mutação , Ratos , Ratos Endogâmicos F344 , Padrões de Referência , Reprodutibilidade dos Testes , Projetos de Pesquisa , Transgenes , Estudos de Validação como Assunto
10.
Genes Environ ; 41: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31086610

RESUMO

BACKGROUND: The repeated-dose liver micronucleus (RDLMN) assay is an effective and important in vivo test for detecting genotoxic compounds, particularly for those that require metabolic activation to show genotoxicity. In a collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) - Mammalian Mutagenicity Study Group (MMS), micronucleus induction of 22 chemicals with the RDLMN assay employing the collagenase digestion method was examined and reported on. Recently, we have developed a method which enables retrospective evaluation of micronucleus induction in formalin-fixed liver tissues (the formalin-fixed method) obtained in general toxicity studies completed in the past. Using this method, we were able to easily evaluate clastogenic potential of chemicals from the formalin-fixed tissues obtained in the general toxicity studies.In this study, to evaluate the usefulness of the formalin-fixed method, we have conducted a liver micronucleus assay using the formalin-fixed liver samples obtained from the above collaborative study (18 of 22 test chemicals) and carried out a comparison with the results obtained by the collagenase digestion method. RESULTS: Comparison of the collagenase digestion and formalin-fixed methods was conducted using the results of the micronucleus assays with a total of 18 test chemicals which included 12 genotoxic hepatocarcinogens (Group A), 4 genotoxic carcinogens but not liver targeted (Group B), and 2 nongenotoxic hepatocarcinogens (Group C). The formalin-fixed method obtained the similar results as the collagenase digestion method in 10 out of the 12 chemicals of Group A, and all chemicals of Group B and Group C. Although the results were statistically contradictive due to different levels of concurrent negative control, the 2 other chemicals of Group A showed comparable responses between the two methods. CONCLUSION: The present study shows that the formalin-fixed method is capable of detecting liver carcinogens with sensitivity equal to or higher than that of the collagenase digestion method. We recommend use of the formalin-fixed method because of its capability of enabling retrospective evaluation of micronucleus induction in the formalin-fixed liver tissues obtained in general toxicity studies completed in the past.

11.
Artigo em Inglês | MEDLINE | ID: mdl-27931811

RESUMO

The in vivo mutation assay using the X-linked phosphatidylinositol glycan class A gene (Pig-a in rodents, PIG-A in humans) is a promising tool for evaluating the mutagenicity of chemicals. Approaches for measuring Pig-a mutant cells have focused on peripheral red blood cells (RBCs) and reticulocytes (RETs) from rodents. The recently developed PIGRET assay is capable of screening >1×106 RETs for Pig-a mutants by concentrating RETs in whole blood prior to flow cytometric analysis. Additionally, due to the characteristics of erythropoiesis, the PIGRET assay can potentially detect increases in Pig-a mutant frequency (MF) sooner after exposure compared with a Pig-a assay targeting total RBCs (RBC Pig-a assay). In order to test the merits and limitations of the PIGRET assay as a short-term genotoxicity test, an interlaboratory trial involving 16 laboratories was organized by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagenicity Society (MMS/JEMS). First, the technical proficiency of the laboratories and transferability of the assay were confirmed by performing both the PIGRET and RBC Pig-a assays on rats treated with single doses of N-nitroso-N-ethylurea. Next, the collaborating laboratories used the PIGRET and RBC Pig-a assays to assess the mutagenicity of a total of 24 chemicals in rats, using a single treatment design and mutant analysis at 1, 2, and 4 weeks after the treatment. Thirteen chemicals produced positive responses in the PIGRET assay; three of these chemicals were not detected in the RBC Pig-a assay. Twelve chemicals induced an increase in RET Pig-a MF beginning 1 week after dosing, while only 3 chemicals positive for RBC Pig-a MF produced positive responses 1 week after dosing. Based on these results, we conclude that the PIGRET assay is useful as a short-term test for in vivo mutation using a single-dose protocol.


Assuntos
Laboratórios/organização & administração , Proteínas de Membrana/genética , Testes de Mutagenicidade/métodos , Mutação , Reticulócitos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Etilnitrosoureia/toxicidade , Humanos , Relações Interinstitucionais , Reprodutibilidade dos Testes
12.
Artigo em Inglês | MEDLINE | ID: mdl-27931819

RESUMO

The Pig-a assay is a useful in vivo mutation detecting test and is easier to perform than the in vivo transgenic mutation assay. This assay is now recognized to be able to detect a number of mutagenic chemicals administered to rats in sub-acute or sub-chronic dose studies. The present investigation was conducted to evaluate the usefulness of peripheral blood Pig-a assays with total red blood cells (RBC Pig-a assay) and with reticulocytes (PIGRET assay) using two genotoxic rodent carcinogens, 1,3-propane sultone (1,3-PS) and 2-acetylaminofluorene (2-AAF). Male rats were orally administered a single dose of each test compound, and both the RBC Pig-a and PIGRET assays were performed using flow cytometry to measure the Pig-a mutant frequency (MF) before and after dosing on Days 8, 15 and 29. In the experiment with 1,3-PS, significant increases in Pig-a MF were observed from Day 15 and Day 8 in the RBC Pig-a and PIGRET assays, respectively. The results of both assays demonstrated that the increases in Pig-a MF were detectable after a single treatment with 1,3-PS. Furthermore, the difference in the kinetics of the increase in Pig-a MF between the RBC Pig-a and PIGRET assays with 1,3-PS suggests that the PIGRET assay has an advantage in detecting the mutant erythrocytes earlier than the RBC Pig-a assay. In contrast, no significant increases were observed in the Pig-a assays using either RBC or reticulocytes with 2-AAF. The negative results in both assays with 2-AAF may indicate the limitation of the single dose method; however, further investigation at higher doses is necessary to determine limitation of the single dose method.


Assuntos
2-Acetilaminofluoreno/toxicidade , Eritrócitos/efeitos dos fármacos , Proteínas de Membrana/genética , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Reticulócitos/efeitos dos fármacos , Tiofenos/toxicidade , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley
13.
Genes Environ ; 38: 15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27482301

RESUMO

Toxicogenomics is a rapidly developing discipline focused on the elucidation of the molecular and cellular effects of chemicals on biological systems. As a collaborative study group of Toxicogenomics/JEMS·MMS, we conducted studies on hepatocarcinogens in rodent liver in which 100 candidate marker genes were selected to discriminate genotoxic hepatocarcinogens from non-genotoxic hepatocarcinogens. Differential gene expression induced by 13 chemicals were examined using DNA microarray and quantitative real-time PCR (qPCR), including eight genotoxic hepatocarcinogens [o-aminoazotoluene, chrysene, dibenzo[a,l]pyrene, diethylnitrosamine (DEN), 7,12-dimethylbenz[a]anthracene, dimethylnitrosamine, dipropylnitrosamine and ethylnitrosourea (ENU)], four non-genotoxic hepatocarcinogens [carbon tetrachloride, di(2-ethylhexyl)phthalate (DEHP), phenobarbital and trichloroethylene] and a non-genotoxic non-hepatocarcinogen [ethanol]. Using qPCR, 30 key genes were extracted from mouse livers at 4 h and 28 days following dose-dependent gene expression alteration induced by DEN and ENU: the most significant changes in gene expression were observed at 4 h. Next, we selected key point times at 4 and 48 h from changes in time-dependent gene expression during the acute phase following administration of chrysene by qPCR. We successfully showed discrimination of eight genotoxic hepatocarcinogens [2-acetylaminofluorene, 2,4-diaminotoluene, diisopropanolnitrosamine, 4-dimethylaminoazobenzene, 4-(methylnitsosamino)-1-(3-pyridyl)-1-butanone, N-nitrosomorpholine, quinoline and urethane] from four non-genotoxic hepatocarcinogens [1,4-dichlorobenzene, dichlorodiphenyltrichloroethane, DEHP and furan] using qPCR and principal component analysis. Additionally, we successfully identified two rat genotoxic hepatocarcinogens [DEN and 2,6-dinitrotoluene] from a nongenotoxic-hepatocarcinogen [DEHP] and a non-genotoxic non-hepatocarcinogen [phenacetin] at 4 and 48 h. The subsequent gene pathway analysis by Ingenuity Pathway Analysis extracted the DNA damage response, resulting from the signal transduction of a p53-class mediator leading to the induction of apoptosis. The present review of these studies suggests that application of principal component analysis on the gene expression profile in rodent liver during the acute phase is useful to predict genotoxic hepatocarcinogens in comparison to non-genotoxic hepatocarcinogens and/or non-carcinogenic hepatotoxins.

14.
Artigo em Inglês | MEDLINE | ID: mdl-27169373

RESUMO

Sensitivity and/or specificity of the in vivo erythrocyte micronucleus (MN) and transgenic rodent mutation (TGR) tests to detect rodent carcinogens and non-carcinogens were investigated. The Carcinogenicity and Genotoxicity eXperience (CGX) dataset created by Kirkland et al. was used for the carcinogenicity and in vitro genotoxicity data, i.e., Ames and chromosome aberration (CA) tests. Broad literature surveys were conducted to gather in vivo MN or TGR test data to add to the CGX dataset. Genotoxicity data in vitro were also updated slightly. Data on 379 chemicals (293 carcinogens and 86 non-carcinogens) were available for the in vivo MN test; sensitivity, specificity or concordances were calculated as 41.0%, 60.5% or 45.4%, respectively. For the TGR test, data on 80 chemicals (76 carcinogens and 4 non-carcinogens) were available; sensitivity was calculated as 72.4%. Based on the recent guidance on genotoxicity testing strategies, performance (sensitivity/specificity) of the following combinations was calculated; Ames+in vivo MN (68.7%/45.3%), Ames+TGR (83.8%/not calculated (nc)), Ames+in vitro CA+in vivo MN (80.8%/21.3%), Ames+in vitro CA+TGR (89.1%/nc), Ames+in vivo MN+TGR (87.5%/nc), Ames+in vitro CA+in vivo MN+TGR (89.3%/nc). Relatively good balance in performance was shown by the Ames+in vivo MN in comparison with Ames+in vitro CA (74.3%/37.5%). Ames+TGR and Ames+in vivo MN+TGR gave even higher sensitivity, but the specificity could not be calculated (too few TGR data on non-carcinogens). This indicates that in vivo MN and TGR tests are both useful as in vivo tests to detect rodent carcinogens.


Assuntos
Carcinógenos/toxicidade , Eritrócitos/efeitos dos fármacos , Testes para Micronúcleos/normas , Animais , Animais Geneticamente Modificados , Dano ao DNA/efeitos dos fármacos , Camundongos , Ratos , Roedores , Sensibilidade e Especificidade
15.
J Appl Toxicol ; 36(12): 1536-1550, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27225589

RESUMO

We investigated the performance of an integrated approach to testing and assessment (IATA), designed to cover different genotoxic mechanisms causing cancer and to replicate measured carcinogenicity data included in a new consolidated database. Genotoxic carcinogenicity was predicted based on positive results from at least two genotoxicity tests: one in vitro and one in vivo (which were associated with mutagenicity categories according to the Globally Harmonized System classification). Substances belonging to double positives mutagenicity categories were assigned to be genotoxic carcinogens. In turn, substances that were positive only in a single mutagenicity test were assigned to be mutagens. Chemicals not classified by the selected genotoxicity endpoints were assigned to be negative genotoxic carcinogens and subsequently evaluated for their capability to elicit non-genotoxic carcinogenicity. However, non-genotoxic carcinogenicity mechanisms were not currently included in the developed IATA. The IATA is docked to the OECD Toolbox and uses measured data for different genotoxicity endpoints when available. Alternatively, the system automatically provides predictions by SAR genotoxicity models using the OASIS Tissue Metabolism Simulator platform. When the developed IATA was tested against the consolidated database, its performance was found to be high, with sensitivity of 74% and specificity of 83%, when measured carcinogenicity data were used along with predictions falling within the models' applicability domains. Performance of the IATA would be slightly changed to a sensitivity of 80% and specificity of 72% when the evaluation by non-genotoxic carcinogenicity mechanisms was taken into account. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Carcinógenos/toxicidade , Mutagênicos/toxicidade , Animais , Testes de Carcinogenicidade/métodos , Carcinógenos/química , Bases de Dados Factuais , Modelos Biológicos , Testes de Mutagenicidade/métodos , Mutagênicos/química , Valor Preditivo dos Testes , Ratos , Medição de Risco/métodos , Relação Estrutura-Atividade
16.
Artigo em Inglês | MEDLINE | ID: mdl-27085473

RESUMO

The liver micronucleus (MN) assay is an effective and important in vivo test for detecting genotoxic compounds, particularly those that require metabolic activation. For this assay, hepatocytes (HEPs) can be isolated by collagenase treatment but without requirement for in situ liver perfusion. Consequently, the liver MN assay can be integrated into a general repeated-dose (RD) toxicity study. The method is also applicable to liver MN assays involving partial hepatectomy or the use of juvenile rats. Here, we propose an improved method for staining HEPs prepared from formalin-fixed liver tissues for MN assays, without collagenase treatment. HEP suspensions are prepared by treating the tissues with concentrated KOH and a fluorescent dye, SYBR(®) Gold (SYGO), is used for staining. Visualization of the MN in SYGO-stained HEPs is clearer than with Wright-Giemsa staining. We compared the induction of MN as measured with our new method versus the conventional method using collagenase dispersion. Our method not only enables the integration of the liver MN assay into a general RD toxicity study but also allows it to be conducted retrospectively.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Testes para Micronúcleos/métodos , Fixação de Tecidos/métodos , Alquilantes/toxicidade , Animais , Corantes Azur , Dietilnitrosamina/toxicidade , Fixadores/química , Corantes Fluorescentes/química , Formaldeído/química , Hepatócitos/química , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Microscopia de Fluorescência , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Testes de Toxicidade/métodos
17.
Mutagenesis ; 31(1): 17-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26142242

RESUMO

While the in vivo genotoxicity of a compound may not always correlate well with its activity in in vitro test systems, for certain compound classes a good overlap may exist between the two endpoints. The difficulty, however, lies in establishing the cases where this relationship holds true and selecting the most appropriate protocol to highlight any potential in vivo hazard. With this in mind, a project was initiated in which existing structural alerts for in vitro chromosome damage in the expert system Derek Nexus were assessed for their relevance to in vivo activity by assessing their predictivity against an in vivo chromosome damage data set. An expert assessment was then made of selected alerts. Information regarding the findings from specific in vivo tests was added to the alert along with any significant correlations between activity and test protocol or mechanism. A total of 32 in vitro alerts were updated using this method resulting in a significant improvement in the coverage of in vivo chromosome damage in Derek Nexus against a data set compiled by the mammalian mutagenicity study group of Japan. The detailed information relating to in vivo activity and protocol added to the alerts in combination with the mechanistic information provided will prove useful in directing the further testing of compounds of interest.


Assuntos
Aberrações Cromossômicas , Simulação por Computador , Dano ao DNA , Mutagênicos/toxicidade , Software , Animais , Cromossomos/efeitos dos fármacos , Humanos , Mamíferos/genética , Testes de Mutagenicidade
18.
Mutat Res Genet Toxicol Environ Mutagen ; 786-788: 144-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26212305

RESUMO

As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative International Validation Study of an in vivo rat alkaline comet assay, we examined 1,2-dibromoethane (DBE), p-anisidine (ASD), and o-anthranilic acid (ANT) to investigate the effectiveness of the comet assay in detecting genotoxic carcinogens. Each of the three test chemicals was administered to 5 male Sprague-Dawley rats per group by oral gavage at 48, 24, and 3h before specimen preparation. Single cells were collected from the liver and glandular stomach at 3h after the final dosing, and the specimens prepared from these two organs were subjected to electrophoresis under alkaline conditions (pH>13). The percentage of DNA intensity in the comet tail was then assessed using an image analysis system. A micronucleus (MN) assay was also conducted using these three test chemicals with the bone marrow (BM) cells collected from the same animals simultaneously used in the comet assay, i.e., combination study of the comet assay and BM MN assay. A genotoxic (Ames positive) rodent carcinogen, DBE gave a positive result in the comet assay in the present study, while a genotoxic (Ames positive) non-carcinogen, ASD and a non-genotoxic (Ames negative) non-carcinogen, ANT showed negative results in the comet assay. All three chemicals produced negative results in the BM MN assay. While the comet assay findings in the present study were consistent with those obtained from the rodent carcinogenicity studies for the three test chemicals, we consider the positive result in the comet assay for DBE to be particularly meaningful, given that this chemical produced a negative result in the BM MN assay. Therefore, the combination study of the comet assay and BM MN assay is a useful method to detect genotoxic carcinogens that are undetectable with the BM MN assay alone.


Assuntos
Compostos de Anilina/toxicidade , Ensaio Cometa/métodos , Dano ao DNA/efeitos dos fármacos , Dibrometo de Etileno/toxicidade , ortoaminobenzoatos/toxicidade , Administração Oral , Animais , Medula Óssea/efeitos dos fármacos , Carcinógenos/toxicidade , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Masculino , Testes para Micronúcleos/métodos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Estômago/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-26065308

RESUMO

Liver micronucleus (MN) tests using partial hepatectomized rats or juvenile rats have been shown to be useful for the detection of hepatic carcinogens. Moreover, Narumi et al. established the repeated-dose liver MN test using young adult rats for integration into general toxicity. In the present study, in order to examine the usefulness of the repeated-dose liver MN test, we investigated MN induction with a 14 or 28 day treatment protocol using young adult rats treated with 4,4'-methylenedianiline (MDA), a known hepatic carcinogen. MDA dose-dependently induced micronuclei in hepatocytes in 14- and 28-day repeated-dose tests. However, although statistically significant increases in micronuclei were observed in bone marrow cells at two dose levels in the 14-day study, there was no dose response and no increases in micronuclei in the 28-day study. These results indicate that the evaluation of genotoxic effects using hepatocytes is effective in cases where chromosomal aberrations are not clearly detectable in bone marrow cells. Moreover, the repeated-dose liver MN test allows evaluation at a dose below the maximum tolerable dose, which is required for the conventional MN test because micronucleated hepatocytes accumulate. The repeated-dose liver MN test employed in the present study can be integrated into the spectrum of general toxicity tests without further procedural modifications.


Assuntos
Compostos de Anilina/toxicidade , Carcinógenos/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Testes para Micronúcleos , Administração Oral , Fatores Etários , Animais , Medula Óssea/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Comportamento Cooperativo , Relação Dose-Resposta a Droga , Esquema de Medicação , Hepatócitos/patologia , Humanos , Japão , Fígado/patologia , Masculino , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Sociedades Farmacêuticas
20.
Artigo em Inglês | MEDLINE | ID: mdl-25953396

RESUMO

At the 6th International Workshop on Genotoxicity Testing (IWGT), the liver micronucleus test working group discussed practical aspects of the in vivo rodent liver micronucleus test (LMNT). The group members focused on the three methodologies currently used, i.e., a partial hepatectomy (PH) method, a juvenile/young rat (JR) method, and a repeated-dose (RD) method in adult rodents. Since the liver is the main organ that metabolizes chemicals, the LMNT is expected to detect clastogens, especially those that need metabolic activation in the liver, and aneugens. Based on current data the three methods seem to have a high sensitivity and specificity, but more data, especially on non-genotoxic but toxic substances, would be needed to fully evaluate the test performance. The three methods can be combined with the micronucleus test (MNT) using bone marrow (BM) and/or peripheral blood (PB). The ability of the PH method to detect both clastogens and aneugens has already been established, but the methodology is technically challenging. The JR method is relatively straightforward, but animal metabolism might not be fully comparable to adult animals, and data on aneugens are limited. These two methods also have the advantage of a short testing period. The RD method is also straightforward and can be integrated into repeated-dose (e.g. 2 or 4 weeks) toxicity studies, but again data on aneugens are limited. The working group concluded that the LMNT could be used as a second in vivo test when a relevant positive result in in vitro mammalian cell genotoxicity tests is noted (especially under the condition of metabolic activation), and a negative result is observed in the in vivo BM/PB-MNT. The group members discussed LMNT protocols and reached consensus about many aspects of test procedures. However, data gaps as mentioned above remain, and further data are needed to fully establish the LMNT protocol.


Assuntos
Aneugênicos/análise , Aneugênicos/toxicidade , Fígado/metabolismo , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Animais , Células Sanguíneas/metabolismo , Células Sanguíneas/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Relação Dose-Resposta a Droga , Humanos , Fígado/patologia , Testes para Micronúcleos/métodos , Testes para Micronúcleos/normas , Ratos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...